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Abstract 

Meta-analysis, the synthesis of quantitative results from many clinical studies, is an 

important and controversial method in medical research. This is especially true if only 

some studies suggest the treatment to be beneficial, leaving medical practitioners in a state 

of confusion. A meta-analysis may force consensus by using differences in treatment, patient, 

and study design characteristics to determine which study conditions can be expected to 

produce positive results. Rarely are individual patient data made available, so one is forced 

to use aggregate measures of patient characteristics instead (for example, average age of 

patients in each study). This thesis proposes using aggregate measures as explanatory 

variables in meta-analyses. Most importantly, we propose using a covariate measuring the 

aggregate health of the treated population, possibly constructed from the outcome of the 

control group (the "population risk"). Studies measuring population attributes are called 

ecological covariates. 

Using ecological covariates as explanatory variables is not straight forward. Strong 

observed associations may be due to measurement error attenuation rather than meaningful 

differences in the studies. For example, a plot of trials treatment effect estimates versus 

the mortality rate in the control group may reveal a strong association, but this does not 

imply that the sicker populations benefit from a treatment differently than healthier ones. 

That conclusion is not excluded, however, and so his thesis is concerned with estimating 

any true association that may exist. For demonstration, the proposed method is shown to 

help resolve a recent controversy over magnesium therapy, a treatment for acute myocardial 

infarction. We argue that magnesium therapy is beneficial despite the results of a recent 

large clinical trial. 

Previous attempts to control for ecological covariates have been either incorrect or inad­

equate. In this thesis we represent clinical trials in a hierarchical model that can be viewed 

as a general measurement error model and does not have any of the restrictions of previous 
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methods. When measurement errors are normal we find that we can quantify the bias with 

convenient expressions, and from this we derive rules that let us assess when we can ignore 

the measurement error. With normal measurement error we derive method of moments, 

maximum likelihood, and Bayes estimates for the hierarchical model. 

The most general model we derive allows treatment effect and population risk esti­

mates to be functions of natural exponential families. We compute Bayes estimates with 

a Metropolised Markov Chain Monte Carlo method. We also give technical attention to 

finding accurate posterior approximations for our MCMC algorithm. 

v 
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Preface 

I was first introduced to this topic while working with Frederick Mosteller's Technology 

Assessment Group (TAG) at the Harvard School of Public Health. Our subgroup included 

Elliott Antman, Frederick Mosteller, Catherine Berkey, and me. I started working with TAG 

by arrangements made by my advisor, Carl Morris, who was supporting me financially and 

otherwise during this time. We were all working together as part of the larger "PORT" 

project (Patient Outcome Review Team) in Barbara McNeil's department of health care 

policy at the Harvard Medical School. 

At one of our meetings Elliott presented summaries of nine clinical trials that evaluated 

magnesium therapy for treating acute myocardial infarction. One of most recent trials 

(ISIS-4), by far the largest of them, seemed to show that the treatment did not offer any 

benefit. Because of the size of the trial, without any further explanation of its results, 

magnesium therapy was likely on its way out of medical use. Elliott had the idea of plotting 

the treatment effect estimates against the control group risk. He has scientific theories 

suggesting that the highest risk patients should benefit from magnesium, and that for 

many reasons ISIS-4 excluded those patients. We will show in Chapter 1 a strong observed 

pattern between the estimates of magnesiums effect and the control group mortality rates 

(see Figure 1.2 on page 9). My contributions to this effort were first to recognize that the 

observed association may have purely statistical sources, and second to propose a crude 

method to account for that portion of the association. That work can be found in Mcintosh 

(1996). 

During this time a group of physicians and statisticians at the New England Medical 

Center, consisting of Joseph Lau, Christopher Schmid, Joseph Cappelleri, John loannidis, 

and Thomas Chalmers, was investigating similar patterns in several hundreds of meta­

analyses that they have compiled. Much of the work after Mcintosh (1996) was done in 

collaboration with this group. As far as I know, they were the first to suggest that using 

xiii 
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the control group mortality rate as a covariate, a technique they call "control rate meta-

regression", should be a general procedure for all meta-analyses. They have a large body of 

ongoing work on this topic, much of which uses the methods contained in this manuscript 

(with Schmid et at, 1995; Lau et al., 1995, as two examples). 

Through my connections with the New England Medical Center, I have also been able to 

work with researchers from the Cochrane Collaboration. In particular, I have collaborated 

with a group, lead by Les Irwig, that investigates methods for performing meta-analyses of 

diagnostic tests. This group showed me that the methods contained in this thesis may be 

applied to correct measurement error biases in their methods as well. 

Associations similar to those found by Elliott and the NEMC group are commonly 

referred to both formally and informally in the statistical and medical literature, and many 

are unaware that the associations have statistical sources. Although I have pointed out this 

problem, I was not the first (see Senn, 1991), but I am unaware of any other work besides 

Mcintosh (1996) that suggests methods to correct the bias. 

The original work on this topic was crude in that it treated meta-analysis without 

covariates, and assumed outcomes had normal distributions. In practice the most com­

mon outcomes are functions of binomial distributions, and so that work is limited. This 

manuscript extends the types of outcomes to allow many outcome distributions, where the 

binomial distribution is a special case. If the biases are small enough to be ignored then 

simple regression methods do lead to valid inferences, and so it is advantageous to know 

when that case holds. So in addition to more sophisticated methods for correcting biases, 

Chapter 3 of this manuscript gives rules to determine when we may be ignore the biases. 

Much of the work in this manuscript has analogies to measurement error models and 

problems of ecological inference, and so these methods have application in those areas as 

well. Readers who are interested in ecological regression methods may find Chapter 3 useful, 

and readers interested in measurement error models may find Chapter 4 and Chapter 5 
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useful. Readers interested primarily in meta-analyses and not the technical details may 

wish to read Chapter 1, Chapter 2 and the examples sections of Chapter 4 and Chapter 5. 

Overall this manuscript may be the first systematic study of using the control group 

outcome as a covariate. Although the manuscript begins by treating the normal model, 

it always works toward deriving procedures that may be used to evaluate data, like the 

magnesium data, that contains trials too small for the normal distribution assumption to 

be valid. While progressing through the text the reader will be helped by keeping that 

development program in mind. 
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Chapter 1 

Introduction 

The term 'meta-analysis' refers to the systematic method of summarizing, or synthesizing, 

the quantitative evidence of several independent studies. Each of k studies provides a point 

estimate Qyl of #„,-, perhaps an experimental treatment effect, and an estimated standard 

error cryi, where i = 1 • • -k. The appropriate synthesis method to use depends on the nature 

of the data. If the studies are homogeneous so that all 9yi = 80, then the differences among 

6yi are due to experimental error only, and a weighted average ol 0yi, with weights l/o^;, 

gives a minimum variance estimate of OQ. We call this the "fixed effects" estimate. 

Individual experiments that do not achieve statistical significance on their own may 

achieve it when their data are pooled, and so conducting a meta-analysis of several small 

studies is an attractive alternative to conducting a single large study. For an alternative 

view, Peto et al. (1988) argue that even meta-analyses require large trials, because if a drug 

is determined to have benefit, it will end up being prescribed to large populations, and only 

large clinical trials can mimic that use. 

The conclusions of studies often differ from one another by amounts greater than can 

be accounted for by experimental error. Thus quantification of the disagreement is another 

contribution of meta-analysis. When studies disagree we call them "heterogeneous". Het­

erogeneous studies are commonly synthesized with a random effects model (a random effects 
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meta-analysis), a method generally recommended in a National Academy of Science report 

(Graver et al., 1992). A random effects meta-analysis allows 6yi to differ, treating the 9yi 

as if they are sampled from a population with mean 9$ and standard deviation ry. Thus 

random effects meta-analysis views 0y{ as having two sources of variability; within study 

experimental error, <ryi, and between study heterogeneity, ry. 

For example, Table 1.1 records a sample of size 10 from 33 placebo controlled random­

ized clinical trials (RCT's) that evaluated streptokinase, a treatment of acute myocardial 

infarction (AMI) (the complete data are given on page 48). Each study contributes a treat­

ment effect estimate, 9yi, which we choose to be the log of the relative risk of mortality. 

The sum of both experimental error and heterogeneity results in the estimates ranging from 

.94 (harmful) to -2.565 (beneficial). In Chapter 2 we find that a fixed effects procedure es­

timates the mean treatment effect as 0Q = -0.231, and a random effects procedure gives 

/?0 = —0.235 and fy = 0.132. Although both models give similar estimates for 0Q, they do 

not have the same interpretation. If the fixed effects model holds then 0O < 0 implies that 

each 0yi < 0, but if the fixed effects model holds, because the 0vi vary, even if 8Q < 0, some 

current or future study may still have 0y{ > 0. In Chapter 2 we find that a future RCT for 

streptokinase has probability near 0.06 of not being beneficial. Thus we can clearly interpret 

0o in the fixed effects, but its interpretation is unclear in the random effects model. 

Although difficult to interpret, Mosteller and Colditz (1994) view heterogeneity as in­

formative, and an opportunity for researchers to "produce answers to new questions that 

cannot be addressed easily in individual studies." For example, there may be differences in 

the administered 'dose' or the 'sex' of the patients or differences in controlled factors (i.e., 

did the studies control for sex). Including these factors as covariates in a random effects 

model may capture information. As an example, Berkey et al. (1994) relate heterogeneity 

of the effect of a tuberculosis vaccine to the distance from each trial to the equator. 

Unfortunately, meaningful covariates are often unavailable for every study included in 
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Table 1.1: A sample of ten clinical trials that evaluated streptokinase for treating acute 
myocardial infarction (sorted by magnitude of treatment effect). The columns are: trial 
name; treatment and control group mortality rates, pt number pc\ treatment and control 
group sizes, n% and nc; treatment effect estimate in log relative risk and its estimated 
standard error, log(^) and ay\ log-odds of mortality in the control group, log(j-^). The 
•unweighted means given in the final row are computed from the complete list of 33 trials 
(see data appendix). 

Trial 

1 
3 
5 
11 
12 
15 
17 
23 
28 
33 

Mean 

in 
0.286 
0.241 
0.253 
0.063 
0.107 
0.092 
0.203 
0.190 

0.053 
0.000 

0.114 

Pc 

0.111 
0.179 
0.218 
0.071 
0.130 
0.120 
0.290 
0.333 
0.158 
0.200 

0.166 

nt 

14 
83 
249 
859 

5860 
8592 
123 
21 
19 
29 
561 

nc 

9 
84 
234 
882 
5852 
8595 
107 
21 
19 
30 
558 

l°g(£) 
0.944 
0.300 
0.149 
-0.128 
-0.190 
-0.263 
-0.354 
-0.560 
-1.099 
°-2.565 

-0.451 

ay 

1.033 
0.304 
0.165 
0.179 
0.051 
0.045 
0.234 
0.546 
1.108 
1.468 

0.577 

log(l^r) 
-2.079 
-1.526 
-1.278 
-2.565 
-1.905 
-1.995 
-0.897 
-0.693 
-1.674 
-1.327 

-1.725 
°: computed assuming one death out of nt + 1 = 30 patients. 

a synthesis, or covariates that are available are insufficient to capture a substantial portion 

of the heterogeneity. The final column in Table 1.1 contains the log-odds of control group 

mortality for the streptokinase data, which is one possible summary of the aggregate 'health' 

of the population treated in each study. We refer to values that summarize the aggregate 

health of a population as the population risk. Scientific and design factors that influence 

treatment efficacy may also influence the population risk, and so the population risk may be 

a useful covariate. For example, less healthy populations may be older, have more serious 

medical histories, or are perhaps treated by less experienced medical staff. 

Figure l.Tplots the estimated treatment effects versus the population risk for the data 

in Table 1.1. Figure 1.1(a) plots the raw data and Figure 1.1(b) plots the data with point 

size reflecting the size of the trials, with the large trials having larger points. The solid 

horizontal line in each plot represents a null treatment effect; studies falling above the solid 
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line suggest streptokinase is harmful, and points falling below this line suggest streptoki­

nase is beneficial. Because the points above the line also tend to have low population risk, 

this plot seems to suggest that streptokinase does not benefit (or may even harm) healthy 

populations, but will benefit less healthy populations. The line in Figure 1.1(a) with label 

"Ordinary Least Squares" is estimated by a least squares regression with the population 

risk included as a covariate, and the line in Figure 1.1(b) with label "Random Effects" 

is estimated by a random effects regression (see Section 2.2). Both regression slopes are 

statistically significant, and thus appear to provide statistical evidence supporting the hy­

pothesis that differences in population risk explains the heterogeneity. If this were true, 

ethical issues arise, because there may exist identifiable populations that do not benefit 

from streptokinase. However, in this manuscript we argue that the slightly upward sloping 

line with label "Ecological" better estimates the true association between treatment efficacy 

and population risk. Despite the apparent association, the effect of streptokinase is nearly 

constant across these studies. 

The observed associations in Figure 1.1 can be completely explained by the attenuation 

of experimental or measurement error, and not necessarily due to any scientifically mean­

ingful differences between the studies. Mcintosh (1996) demonstrated this affect for general 

definitions of treatment effect and proposed a method to deattenuate the error and estimate 

any underlying association. The deattenuation method has many limitations, the most se­

vere being the requirement of normally distributed measurement error. This assumption 

makes the method valid only for meta-analyses of large studies. This thesis extends the 

results of Mcintosh (1996) to correct for this and other deficiencies. 

An outline of this thesis is as follows. Chapter 2 discusses random effects meta-analysis 

in more detail, and introduces notation used throughout the text. We represent the usual 

random effects model in a 2-stage hierarchical model, with the first stage representing the 

experimental error (the distribution of #„,•) and the second stage, the 'structural model', 
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Figure 1.1: Plot of log risk ratio, log (JJQ j , versus the control group log odds, log( j ^ ) , for 
the streptokinase data. The solid horizontal line is the line indicating no effect of treatment 
across all levels of population risk. The slightly increasing line with label "Ecological" is 
estimated by the method recommended in this thesis. Plot labeled (a) gives a line with 
label "Ordinary Least Squares" that it estimated with ordinary least squares regression. 
Plot with label (b) gives a line with label "Random Effects" that is estimated by random 
effects regression. 

representing the distribution of the true treatment effects (the distribution of the 0y{). We 

briefly review estimation methods that are popular in current practice. 

In Chapter 3 we extend the random effects model of Chapter 2 to incorporate the pop­

ulation risk, and the hierarchical representation of the previous chapter becomes bivariate, 

with first stage representing the experimental error of the treatment effect and population 

risk estimates, and the second stage representing the structural association relating their 

true values. We assume the experimental error has a normal distribution, and so this model 

is valid only for meta-analyses of large studies, but this assumption makes it convenient to 

demonstrate and discuss the effect of experimental error attenuation. This chapter extends 

file:///Jr~s
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Mcintosh (1996) because it allows covariates in the structural model, quantifies the mea­

surement error attenuation to a much greater degree, and derives a means to determine if 

the biases are small enough to be ignored. Chapter 4 derives and demonstrates maximum 

likelihood, Bayesian, and method of moment procedures to estimate the model Chapter 3 

constructs. 

The model presented in Chapter 3 has many limitations that restrict its general use. 

Chapter 5 reviews the requirements of a more general procedure and proposes a model that 

meets those requirements. In particular, we extend the experimental error, the first stage 

of the hierarchical model, to include distributions that are functions of natural exponential 

families. The most useful of these distributions are the binomial, Poisson, and normal. We 

extend the structural model of Chapter 3, the second stage, to allow more complex associ­

ations between the true treatment effect and population risk than the model of Chapter 3 

allows; for example, polynomial functions. We derive Bayesian estimation procedures based 

on a "Metropolised" data augmentation (Tanner and Wong, 1987; Gelman et al., 1995), a 

Markov-Chain Monte-Carlo (MCMC) algorithm, and a natural extension of the estimation 

procedures given in Chapter 3. Thus Chapter 2, Chapter 3, Chapter 4 and Chapter 5 

present a progression of models for meta-analysis, with less restrictive assumptions and 

more general estimation procedures. 

At the end of Chapter 4 and Chapter 5 we investigate the statistical properties of the 

estimating procedures each proposes. In particular we evaluate the frequency properties of 

interval estimates of structural model parameters. We demonstrate that the procedures in 

both Chapter 3 and Chapter 5 adequately account for the experimental error attenuation 

when studies are large, and that when studies are small, the methods of Chapter 5 adjust 

correctly. 

Before proceeding, we introduce another data set, and demonstrate that although asso­

ciations like those in Figure 1.1 can be explained by measurement error, estimating a true 
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underlying association can be valuable to help answer important scientific questions, and 

also to affect policy. 

Example: The magnesium trials 

Table 1.2 records the results of nine clinical trials evaluating intravenous magnesium 

for treating AMI. The treatment effect estimates (in log relative risk of mortality) range 

from 0.210 (harmful) to -2.249 (beneficial). Most importantly, the single largest clinical 

trial, ISIS 4 with over 50 thousand patients (94% of the total), suggests possible harm of 

magnesium therapy (p = 0.050). This is contrary to what was expected. Not only have 

most previous studies suggested that magnesium is beneficial, but there is other scientific 

evidence to support this hypothesis (Antman, 1995a,b, summarizes biological theory, an­

imal experiments, and epidemiological studies). How we way the evidence from ISIS 4 is 

controversial. For many, the magnitude of the ISIS 4 trial overturns all previous evidence 

(Gupta, 1996). Once a popular treatment for AMI fewer than ten percent of clinicians now 

use magnesium therapy (Antman, 1995a). 

In Chapter 2 we show that, because of the size of ISIS 4, if we synthesize the magnesium 

trials with a fixed effects model, the conclusion that magnesium has no benefit (#o = 0.021 

with standard error 0.030). If these results are synthesized with a random effects model a 

different conclusion follows (0O = -0.469 with standard error 0.226, TV = 0.447), and on 

average magnesium can be expected to be beneficial. However, even if the random effect 

model is preferred, because of the size of ry, perhaps 19% of treated populations may not 

derive any benefit from, and perhaps may be harmed by, magnesium therapy. Explanation 

of the heterogeneity could be very valuable. 

Figure 1.2 plots the treatment effect (log relative risk) against population risk estimates 

(log-odds of control group mortality). As with the streptokinase data, we observe a negative 

association. Any negative association can be explained in part by attenuation of experi­

mental error, but here the deattenuated line (with label "Ecological") also has a negative 
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Table 1.2: Data from nine clinical trials evaluating intravenous magnesium for treatment 
of AMI (sorted by magnitude of treatment effect). The columns are: trial name; treatment 
and control group mortality rates, pt and pc\ treatment and control group sizes, nt and nc\ 
treatment effect estimate in log relative risk and its standard error, log(jp-) and a; log odds 

of mortality in the control group, log( j£^-). The final row gives the unweighted means of 
the columns. _ _ 

Trial 

Feldsted 
ISIS 4 

Abraham 
LIMIT 2 

Morton 
Rasmussen 

Ceremuzynski 
Schecter '95 

Schechter 
Means 

Pt 

0.067 
0.076 
0.021 
0.078 
0.025 
0.067 
0.040 
0.042 
0.017 
0.048 

Pc 

0.054 
0.072 
0.022 
0.103 
0.056 
0.170 
0.130 
0.173 
0.161 
0.104 

nt 

150 
29011 

48 
1150 

40 
135 
25 
96 
59 

3235 

nc 

148 
29039 

46 
1150 

36 
135 
23 
98 
56 

3233 

M£) 
0.210 
0.051 

-0.043 
-0.271 
-0.799 
-0.938 
-1.182 
-1.384 
-2.249 
-0.734 

a 

0.460 
0.031 
1.399 
0.134 
1.203 
0.374 
1.118 
0.536 
1.037 
0.699 

i°g(ad 
-2.862 
-2.556 
-3.807 
-2.169 
-2.833 
-1.583 
-1.897 
-1.561 
-1.653 
-2.324 

slope that is statistically significant (p = 0.023). The ISIS 4 trial falls close to this line 

suggesting that its result can be explained by its healthier population, and that less healthy 

populations are likely to find beneficial from magnesium therapy. 

The evidence summarized above is purely statistical, but is consistent with other ev­

idence supporting magnesium as a beneficial treatment for some populations. Antman 

(1995a) discusses several differences in some of the studies for which information is avail­

able. Based on scientific considerations, the most important difference may be the duration 

from the onset of chest pain to administration of magnesium. Biological evidence suggests 

that for magnesium to be effective, it should be administered shortly a after onset of chest 

pain. The Rasmussen trial treated all patients in less than three hours after onset. Trials 

other than Rasmussen to not give information on time until treatment, but some give infor­

mation on time until their patients were randomized. Because patients cannot be treated 

before randomization, time until randomization provides a lower bound for time until treat-
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Figure 1.2: Plot of log risk ratio, log(?M, versus the control group log odds, log(j£^), 
for the magnesium data. The line with label "Ecological" is estimated by the method 
recommended in this thesis. The solid horizontal line is the line indicating no effect of 
treatment across all levels of population risk. The values in parentheses give the total 
number of patients in the treatment and control groups. 

ment. The LIMIT 2 study randomized patients at a median of three hours after onset of 

chest pain, and ISIS 4 randomized patients a median of eight hours after onset (for certain 

high risk subgroups the median was over twelve hours!). Notice that the treatment effect 

estimates fall in the order suggested by these values. 

If indicators of timing were available for all trials we could include them as covariates 

in a random effects meta-analysis. But its effect can be measured indirectly though the 

population risk. Because sicker patients are less likely to survive until randomization, 

trials with long durations until randomization will be associated with lower control group 
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mortality rates (and thus lower population risk). Additionally, patients with "conditions 

associated with high risk" were excluded from ISIS 4 (ISIS-4 Collaborative Group, 1995), 

and this too can be measured by the population risk. Because the structural model in 

Figure 1.1 measures both timing and selection criteria indirectly, it may control for these 

differences in all trials, not just those that provide that information. 

The meta-analytic method proposed in this thesis adds statistical evidence to the sci­

entific evidence supporting a new clinical trial to evaluate magnesium therapy1. Others 

question the ethics of a new trial (for example see Gupta, 1996), calling any new trial 

"unethical". Despite the scientific arguments on both sides, the method can add valuable 

statistical evidence into important scientific and policy debates. 

'A clinical trial to further evaluate magnesium, organized by Dr. Elliott Antman, has recently received 

scientific approval from the National Institute of Health 
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Chapter 2 

Preliminaries: Notation and Random Effects 

Meta-analysis 

Many popular methods for combining information use the normal random effects model (for 

example see Cochran, 1954; Gilbert et al., 1988; Olkin, 1995; Morris and Normand, 1992; 

DerSimonian and Laird, 1986). In this chapter we review the use of random effects models 

for combining information, and introduce its representation in a hierarchical model. This 

chapter has four parts: First, we introduce notation describing all observed and estimated 

quantities from a clinical trial. Second, we use the random effects model to represent 

the process that generates the observed data. Conducting a meta-analysis then involves 

estimating the parameters of the random effects model, and the third part of this chapter 

discusses a few of the most popular estimation methods. Finally, we present examples 

and demonstrate the claims made in Chapter 1, that when explanation of heterogeneity is 

insufficient, a research synthesis does not lead to a consensus opinion. 

2.1 Observed and Estimated Quantities 

Commonly, a treatment effect estimate summarizes the conclusion of a clinical trial, 

but the treatment effect estimate is actually computed from two estimates. For example, 
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the data in Table 1.1 and Table 1.2 give the mortality rates in the treatment group, pn, 

and control group, pd, and we compute the treatment effect by taking the natural log of 

their ratio; 0y{ = log ( ̂  J. The mortality rates measure the true underlying treatment and 

control group mortality rates, pn and pd- We call pa and pd the treatment and control group 

estimands, and call pd and pd the treatment and control group estimates. The treatment 

effect estimate 9yt measures the treatment effect estimand, 8y{ = log f^a j . We generalize 

the process of data collection, treatment effect definition and estimation as follows. 

Treatment and Control Outcomes 

Clinical trials estimate the mean population outcome under a treatment, fin, and a 

mean population outcome under a control fid- For example, fin and fid could be mortality 

or survival rates, mean survival time, or the mean reduction in some patient outcome such 

as cholesterol level. In practice we do not observe fin and fid but they are instead measured 

with error from the treatment and control estimates fin and fid, respectively. If we assume 

individual subjects in the treatment and control groups have outcomes distributed with 

means fin and fid, and known variances V(fin) and V(fid), then fin and fid have sampling 

distributions given by 

V(fiti) . i ind 
fhi I fin ~ 

. i ind 
ftd I fhi ~ 

fhi 

flci, 

ihi 
V(fid) 

lie 

i=l---k (2.1) 

i=l---k (2.2) 

With the square bracket notation above, the first argument represents the mean and sec­

ond argument represents the variance of the random quantity. Here V(fi) represents a 

known variance function that depends on the mean parameter fi. For example, a Bernoulli 

observation has mean p and variance V(p) = p(l — p). We will use fn = (ftti,fid)', and 

fit = (fiti,fiti)' to represent the treatment and control estimands and estimates together. 

We assume that within each study that fin and fid are independent, and we also assume 

independence between trials. That is, we assume independence of fii and fij, i j£ j . 
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The assumptions we make here, that of known variance function V(-) and independence 

fin and fid, typically hold true when the studies are clinical trials. 

Treatment Effect 

Functions of fii define the treatment effect, and we denote it by 9yi = 9y{in). Because we 

observe fin indirectly by pn, w e also observed the treatment effect indirectly by a function 

of/i,-. Customarily that function is 0yi = Oy(fii), but that is not necessary. Although fii has 

simple well known distribution, the distribution of 0y{ may be complicated, depending on 

9y{-). Customarily its mean and variance is estimated by the delta method by 

8vi\9vi~[9vi,eli] » = l - -& (2.3) 

where a\{ = V9'yiV(fii,rii)'V9yi, and V(//;,n,-) = di&g(V(fin)/nn, V(/ie,-)/nc,-) denotes the 

diagonal variance covariance matrix of fii, and V0yi = (57^,9^7)'• We typically evaluate 

(2.3) at fin to form the estimated standard error avi. 

If nn and nc; are large, and V8yi{-) is continuous at fi{, then (2.3) can be assumed to 

have an approximate normal distribution. Otherwise (2.3) leads to a poor approximation. 

Population Risk and Covariates 

For completeness, we define the population risk estimate and estimand here, although we 

will not address its use until Chapter 3. Like 9y{, we also define the population risk estimand 

as a function of fi{, denoted by 0xi = 0x(fii), and denote its estimate by 9xi = 9x(fii). 

Together we denote the treatment effect and population risk estimates as 0i = (9yi,9xi)', 

and its estimand as 0, = (0yi,8xi)'. We restrict 0{fii) to be a bijective (one-to-one) function 

of fii so that there exists an inverse function mapping 0i to fii, and denoted by w = fi(9i). 

Each study may also contribute a vector of study level covariates, Z{. For example, Z; 

may contain the treatment 'dose'. Table 2.1 summarizes all the observed quantities from 

a clinical trial and represents the data available for a typical meta-analysis (compare to 

Table 1.1 and Table 1.2). Table 2.2 summarizes all the notation just introduced. 
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Table 2.1: Representation of observed quantities from a meta-analysis 
Treatment Population 

Trial Outcomes Size Effect Risk Covariates 

i fiti fid nti lid 9yi 9xi Zj 

fid nti llcl 9y\ 9X\ Z\ 

fic2 nt2 «C2 0y2 9X2 Z2 

fick ntk nck 0yk (Lk Zk 

Table 2.2: Summary of notation for observed and estimated quantities. 

Symbol/Definition 

fiti, fiti 

fid, fid 

fii - (flti,flci)' 

fii = (fiti, fid)' 

f* = {fl\,fl2,--' 

fi = {fil,fi2,--' 

"yi i"yi 

"xi, "xi 

8j = {8yi,9xi) 

8i = (9yi,9xi) 

0 = {9\,02,---

0 = (9i,92,-•• 

Zi = (Zn, Zj2, 

Z = (Z\,Z2,--

Vi = ztf 
Vi = zip 

• , / i f e ) ' 

•,fiky 

,ok)' 
,6k)' 
•••, Zip)' 

•,zk)' 

Comment 

estimand and estimate of the treatment outcome, 
estimand and estimate of the control outcome. 
implicit function of 0,-: m = fi(9i) 
implicit function of 0,-: fii = fi(9{) 
also written as ft, = fi(9) 
also written as fi = fi(6) 

treatment effect estimand, estimate for trial i 

population risk estimand, estimate for trial i 
implicit function of jit,-: 0,- = 9(fii) 
implicit function of #,•: 0,- = O(fii) 
also written as 0(fi) 
also written as 0(fi). 

p-dimensional vector of study level covariates 

expected mean of 9yi for trial i 
estimated mean estimate of 8vi for trial i 

0o,0o prior mean and estimate when no covariates are used 

1 fin 

2 fin 

k fitk 



www.manaraa.com

2.1 Observed and Estimated Quantities 15 

2.1.1 Example: 

We now use the streptokinase data to demonstrate these definitions and notation. 

Treatment and control outcomes 

> The streptokinase data summarized in Table 1.1 has control group mortality rates as 

estimands, and so fi{ = p,- = (pu,Pd)', where pn represents the true treatment group 

death rates, and pd represents the true control group death rate. We estimate them by 

pi = (pn,pd)', which are the average mortality of the treatment and control patients. If 

an individual patient in a trial has a Bernoulli outcome (for example, life=0 and death=l), 

then V(p) = p(l — p) and expressions (2.1) and (2.2) give the distribution of pi as 

„ i ind 
Pti | Pti ~ 

Pci | Pci 
ind 

Pti, 

Pci, 

P(i(l - Pti) 
nti 

Pd(l ~ Pci) 

i=l---k 

Treatment effect and population risk 

We may choose one of many commonly uses measures of treatment effect, including; 

log relative risk, 9y(p{) = \og(pti/pd); risk difference, 9y(pi) = pti - Pd\ log-odds, 9y(pi) = 

l°g ( i_" •) ~ 1°S ( i_" ) • Some choices for population risk include; log-odds of mortality in 

the control group, 9x(pCj = ^ ( T S T ) ;
 s u m of the log odds in treatment and control group; 

9x(Pi) = log( j^- ) + l o g f ] ^ ) ; absolute risk 9x(Pd) = Pd-

Figure 1.1 uses log relative risk treatment effect and V0^(/t,) = (l/pti,-l/Pti)', a n ' l 

(2.3) yields the following approximate sampling variance of 0y;: 

Customarily analysis proceeds by treating 0̂ ,- ~ JV(0;, ayi). 
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2.2 Random Effects Meta-analysis: The normal model 

We assume each of k independent clinical studies contributes a treatment effect esti­

mate, 9yi, its approximate standard error, &yi (perhaps estimated by (2.3)), and a vector of 

covariates, Zi, i — 1 • • -k. The previous section described how the observed random quan­

tities 0yi relate to their estimands 0yi ivithin a clinical study, but meta-analysis concerns 

studying the distribution of 0 ;̂ between the studies. We consider two competing models for 

describing the behavior of effects between studies: the fixed effects model and the random 

effects model. The fixed effects model assumes each experiment estimates the same quan­

tity, 0;,i = 0y2 = • • • = 0yk = 0o, and experimental error explains all differences among the 

0yi. In notation we write the fixed effects model as 9yi = 0o + e;, where e,- are independent 

normally distributed errors with mean 0 and variance ayi. 

The random effects model allows the true treatment effects to differ, so that both ex­

perimental error and heterogeneity account for the variability between the 0yl-. In notation 

we write 0y{ = 9yi + e,-, and 0y; = 0o + d«, where e,- are defined above and d,- are independent 

and identically distributed normal error terms with mean 0 and variance Ty. Note that the 

random effects model reduces to the fixed effects model if Ty = 0. 

These models change only slightly if we include study level covariates. The fixed effects 

model then has true effects 0yl- falling exactly on a regression line 7/; = Z\P, and the random 

effects model has the true treatment effects varying around the regression line with variance 

Ty. In notation, we write E(0n | /3,r2) = ifi = Z\P, and E((0j,; - r/,-)2 | /3,r2) = r2 . 

We may express the random effects model hierarchically by 

N(9yi,a
2
yi) (2.5) 

N(Vi,rl) (2.6) 

Z'iP (2.7) 

where <j> = (P',Ty)'. Expression (2.5) describes the distribution of the treatment effect 

p(9yi\9yi,<t>) = 

P(6yi I 4>) = 

Vi = 
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Table 2.3: Hierarchical representation of the random effects model 

Experimental Model 

p(9yi\9yi,cp) = N(9yi,c72
yi) 

i = l---k 

crfl{ known 
Structural Model 

V(9yi\<p) = N{TK,T*) 

i = l---k 

Vi = z<p 
4> = 08' , TV)' 

<j> unknown 

Between Study Model 

p(9yi\<j>) = Nfali + T*) 
i = l---k 

Posterior Model 
p(9yi\9yi,<p) = N{T,?,T*Bi) 

i = l---k 

V* = ViBi + 9yi(l - Bi) 

R "»'' Ux ~ <rs.+T2 

estimate within each study, and (2.6), referred to as the structural model, describes the 

distribution of the true effects between each study. 

Notice that distributions (2.5) and (2.6) together specify a joint distribution of 0y; and 

0yi\ p(9yi,9yi) = p(0yi | 0yi,<j>)p(0yi | <p). We will return to this point often throughout 

this manuscript. The joint distribution has an equivalent specification with the marginal 

distribution p(9yi \ <p) and the conditional distribution p(9yi \ 9yi,<j>) by: p(9yi,9yi\<p) — 

p(9yi\9yi)p(9yi\<j>). Table 2.3 summarizes these representations. Distributions (2.5) and 

(2.6) are given in the upper and lower cells of the left column, respectively. The upper right 

corner describes the marginal distribution p(9yi \ <j>), the between study distribution. The 

lower right corner describes the posterior distribution, via Bayes rule, p ^ ; | 9yi,<p). Note 

that the variance in the upper right corner contains both the experimental and systematic 

components of error. 



www.manaraa.com

2.3 Estimation 18 

2.3 Estimation 

Given the random effects model (2.5) and (2.6), a meta-analysis involves making infer­

ences about the unknown parameters <j>. The between study model summarized in Table 2.3 

is a linear model with residual variance ayi + ry. If we treat the experimental error ayi as 

known, then if r2 was also known, we would estimate p by a weighted linear regression with 

weights Wi(ry) = l/(cA + r 2 ) , by 

p = (Z'D(ry)Z)-1Z'D(r!,)0!/ (2.8) 

where Wi(Ty) = l/(o-2,- + r2) , D(r„) = diag(wi(ra), w2(ry),- - - ,wk(ry)), and B,-(r„) = 

cr2/(cr2- + r 2 ) . If we have no covariates we can re express (2.8) more familiarly as 

. E L <ry% 
0o(r„)=^ ty,7 (2-9) 

The random effects model above has two extreme cases; r2 = 0 and r2 = oo. When r2 = 

0 then the weights become w,(ry) = 1/a2. Because we assume ayi are known, inferences for 

P then involves a standard weighted regression. When r2 = oo then the weights become 

Wi(Ty) = 1, and thus inferences for P involves a simple linear regression. Between these two 

extremes, when 0 < Ty < oo, estimation of P involves a regression with unknown weights 

Wi(ry). It should be not surprising to find much of the effort in performing a random effects 

meta-analysis involves estimating the heterogeneity component r2. We next summarize 

popular methods for estimating <j>. 

2.3.1 Cochran/Dersimonian and Laird 

Perhaps the most common citation for random effects meta-analysis is DerSimonian 

and Laird (1986), but Cochran (1954) contains their method almost completely, so we will 

refer to it as the CDL (Cochran, Dersimonian and Laird) method. Their method estimates 
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a mean treatment effect 0o and ry only, and does not allow covariates, and so they base 

estimation on (2.9). They first lest whether the fixed effect or random effect model holds 

by computing the test statistic 

k 

QW = Y^ ">;(°)(<V - M°)) 2 

which has an approximate Xk-i distribution when r2 = 0. Thus Qw can be used to test 

IIo '• Ty = 0 versus HA : r2 > 0. If they do not reject the test at a given significance level, 

then they treat ry = 0, otherwise DerSimonian and Laird (1986) estimate r2 by 

Qw ~ (k - 1) f2 = max 0, 
yk w.(0) - Spi « » 

(2.10) 

Expression (2.10) is derived by setting Qw equal to its expectation. They then estimate 0o 

by 9O(T,J) according to (2.9). 

2.3.2 Morris (1983) 

Most approaches that view the random effects model estimation hierarchically are based 

at least conceptually on the empirical bayes procedure in Morris (1983b) (for an early 

example of Empirical Bayes procedures applied to meta-analysis see Gilbert et al., 1988). 

This procedure also allows study level covariates Z,,a,p dimensional vector, in the structural 

model, a feature omitted in Cochran (1954) and DerSimonian and Laird (1986). 

Morris estimates P and r2 with the following iterative procedure. Start with an initial 

guess f2 for r2. Then with weights Wi(fy) iterate between estimating /3 by (2.8) and then 

update the estimate of r2 by 

ZliMfy){W(k-PWyi ~ Z'M -4 -} 
Hi«*(*V)' 

These steps are repeated until the estimates converge. 

f2 = — - - i- • _ : ^i. (2.11) 
Hi««(*v) 



www.manaraa.com

2.4 Examples 20 

2.3.3 Maximum Likelihood and Bayesian inference 

We may also evaluate the random effects model by maximum likelihood or Bayesianly. 

If we assume (2.5) and (2.6) have normal distribution, then the between trial distribution 

(upper right corner of Table 2.3) is also normally distributed, and inferences for </> can be 

made from the likelihood 

«*l*>-n7T77-'{-iS^£} <2-12) 
,=i y/a?j{ + r2 I L aw + Tv ) 

We may compute maximum likelihood estimation numerically or by the EM algorithm 

(Dempster et al., 1977). For Bayes estimation (2.12) multiplied by a prior distribution p(<t>) 

forms a posterior distribution. See DuMouchel and Waternaux (1992) for a discussion of 

issues for specifying p(<j>). We may perform fully Bayes estimation with a Markov chain 

Monte Carlo method (MCMC) (for example Gelman et al, 1995, pages 78-90). DuMouchel 

(1990) and Morris and Normand (1992), give approximate Bayes procedures. 

2.4 Examples 

Here we describe how we use the random effects model to combine information from 

k independent studies when the 0 ;̂ have approximate normal distribution. For outcomes 

having binomial distribution the normal approximation to 0yl- holds only when nnpti > 5 

and ridPci > 5 and also nu(l - pn) > 5 and rac,(l — pd) > 5. Referring to the magnesium 

data and the complete streptokinase data (see 3.4 on page 48) we find that most of the 

magnesium trials and nearly half of the streptokinase data fails to meet this criteria. In the 

description that follows we should only consider this model valid for that subset of the trials 

that meets the criteria. We present the normal model here because its description conveys 

all the concepts we require, and because in practice it is common to find the normal model 

used even when this criteria fails. We will treat the nonnormal aspect of the trials as this 
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Table 2.4: Parameter estimates from random effects meta-analysis for streptokinase and 
magnesium data. Values in parentheses are the standard error estimates of 0o, except for 
the Bayes estimate which is a posterior standard deviation. The columns are: 'Fixed', 
estimate assuming the fixed effects model; 'Morris', estimate using Morris (1983a); 'CDL', 
estimate from Cochran/Dersimonian and Laird method; 'Bayes', Bayes procedure estimated 
by MCMC simulation using priors uniform on 0o and ry. 

Data 

Streptokinase 

Magnesium 

Estimate 

9o 

9o 

ty 

Model/Method 
Fixed Morris CDL 

-0.231 
(0.046) 

0a 

0.021 
(0.030) 

Q a 

-0.235 
(0.056) 

0.132 

-0.469 
(0.226) 

0.447 

-0.231 
(0.046) 

0.0876 

-0.412 
(0.193) 

0.126c 

Bayes 

-0.241 
(0.064) 

0.162 

-0.523 
(0.338) 

0.675 

": by definition; b: p-value 0.190;c: p-value 0.001 

manuscript proceeds. 

Following common practice we apply these procedures to the data in Table 1.1 and 

Table 1.2, assuming normally the normal error approximation holds. Table 2.4 summarizes 

those results. For the streptokinase data, the CDL method cannot reject Ho : r2 = 0, and 

so that estimate equals the fixed effects estimate (in the table we computed 0o with Ty = 0, 

but we computed fy according to (2.10)). The random effects models give only slightly 

different estimates, but every estimate is statistically significant, so we may be confident 

that on average clinical trials for streptokinase show benefit. 

Even though the random effects and fixed effects procedures give similar estimates for 

0o, we interpret the random effects models differently because they allow heterogeneity. 

Using 0o and f2, we can estimate the probability that a future trial for streptokinase, 0f, 

will be harmful. We estimate the mean of a future trial as Of = 0o, and its standard error 

by se(9f) = o+ = Jse2(90) + f2. Treating (0+ - 0o)/o+ as having an approximate tk-\ 
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distribution yields 

= pL,>^f\ (2.13) 

Using the Morris estimates from Table 2.4, expression (2.13) yields 

P L 2 > , °-231
 a ) = 0.058 

V \/0.0562 + 0.1312/ 

Thus, although we may be confident that 0o < 0, because of the large heterogeneity, 

general use of streptokinase has significant risk. 

For the magnesium data, the fixed and random effects models yield substantially differ­

ent estimates for 0o. The fixed effects estimate gives a statistically significant and positive 

estimate (harmful), but the random effects models show a statistically significant nega­

tive effect (benefit) of magnesium. The Cochran/Dersimonian and Laird method rejects 

Ho : Ty = 0 (p < 0.001), so the random effects model likely holds. However, even if the 

random effects model holds, we cannot be confident that every 9yi < 0. We estimate the 

probability that a future trial of magnesium shows harm, P(9f > 0), according to (2.13) as 

P(ts > Vo.22~6ffo.447*) = ° - 1 8 8 ' a S u b s t a n t i a l " S k ! 

2.5 Discussion 

When the fixed effects model holds the standard error of p is smallest, and so it may 

be tempting to use the fixed effects model whenever possible. Perhaps this observation 

leads DerSimonian and Laird (1986) to suggest testing for Ho : r2 = 0 before proceeding. 

However, Cochran (1954) points out that testing before determining which procedure to 

use (fixed effects or random effects) underestimates the variance of 0o (and thus p), and 

http://Vo.22~6ffo.447*
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the conservative approach is to always use the random effects procedure. The procedure 

of Morris (1983b) has good small sample properties when making inferences for P (Morris, 

1983b; Laird and Louis, 1989), and also has the advantage of allowing covariates. 

Work by Morris (Morris, 1983b, 1995) and Everson (1995) document that with small 

k maximum likelihood procedures with hierarchical models tend to under estimate the 

variance component r2 , resulting in underestimates of the standard errors of p. With small 

k we prefer Bayes or approximate Bayes methods (e.g., Morris, 1983b; Morris and Normand, 

1992; DuMouchel, 1990) with small k. 

Meta-analyses of the streptokinase and magnesium data suggests that, although 0o < 0 

(beneficial), their general use involves significant risk. We can reduce the risk by determining 

which conditions are likely to produce beneficial results. One solution is to include includes 

important scientific and design factors as covariates, but rarely are covariates available for 

all studies. Plots like Figure 1.1 and Figure 1.2 suggest that the population risk estimate 

9xi may offer a partial solution. The next chapter investigates 9xi as a covariate. 
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Chapter 3 

Controlling for an Ecological Covariate in Normal 

Hierarchical Models 

Chapter 2 presented a random effects model commonly used to synthesize the quantitative 

results of clinical studies, and demonstrated that their conclusions may be unsatisfactory, 

because even if we find a treatment is beneficial on average, with large heterogeneity the 

treatment may still harm some populations. A satisfactory synthesis must determine which 

populations or treatment conditions are associated with beneficial effects of treatment. 

Figure 1.1 and Figure 1.2 suggest that the population risk may be helpful. This chapter 

investigates using the population risk as an explanatory variable in a meta-analysis. We 

intend to investigate the ecological model1 that relates 0y(- to 0X1- and Z,. Recall that we 

observe 0y; and 9xi only indirectly by 0yl- and 0X,-. The primary result of this chapter 

demonstrate that the association that relates 0yl- to 0XI- and Zi does not represent the 

association that relates 0y; to 9xi and Zi, and quantifies the bias. That result can be found 

in equations (3.14) and (3.15). 

]We use ecological following its use in sociology and epidemiology to mean pertaining to groups or 

environment. For a brief history see Steward (1990) 
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3.1 The Model 

We extend the hierarchical model from Chapter 2 to include the population risk by 

decomposing the joint distribution of (9\, 0,')' into within and between components as 

p(9i,9y\<t>) = V(0i\0i,<l>)p(9i\<l>) 

= p(9i\9i,<j>)p(9yi\9xi,<j>)p(9xi\ <j>) 
v v '« v ' 

measurement ecological 
V ' 

structural 

For reasons we soon make apparent, the first factor on the right hand side above, the 

within trial distribution of 0;, is named the measurement model. The second component, 

the between trial distribution of 0,-, represents the structural model, and contains within it 

the ecological model that we are interested in. 

3.1.1 Measurement Model 

We assume each of k clinical studies contributes a treatment and control outcome fii, and 

we estimate the treatment effect and population risk from it by 0,- = 9(fii). Analogous to 

Chapter 2, we derive the within group distribution of 0,- from the distribution of fii. Expres­

sions (2.1) and (2.2) show that the /2,'s have a well know distribution: fii is unbiased for m 

and has diagonal covariance matrix Var(/i,-) = V(/i,-, iii) = diagonal(V(fin)/nn, V(fid)/nd)-

Although the components of fii are independent, the components of 0,- are dependent be­

cause they are both functions of fii. Their joint distribution depends on the definitions of 

0yi and 9xi but we estimate it with a Taylor series by 

Measurement error model: 
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p(0i\0i,<t>) = N2\ | "• | , S , = | ^ ^iCli | | (3.1) 

with variance 

S; = J'(fii)V(fn)3(fi{) (3.2) 

and where J(-) represents the Jacobian of the transformation 0(-) defined by 

J(fi) = ^-=\ 9"< 9"< (3.3) 
^ ' dfi \ aox(n) dOx(n) I 

\ dm diic J 

Note the parameterization of the off diagonal elements of £,•; cov [9yi,0xA = Pwi^ti-

The parameter f3wi is named the within trial regression slope because within each trial, if 

0,- were observed, we could predict 0y{ from 9xi by 

E(9yi | 9xi,9i) = 0y{ + 0wi(0xi — 0X{) (3.4) 

Even though we do not observe 0,-, because we assume S,- are known, the (3wi are known. 

With large nn and ?*„• and with J(-) continuous at fii, then (3.1) has approximate normal 

distribution. We typically evaluate S; at fn = fii. With small nn or rcc;, the approximation is 

poor, but to make the exposition clearer, throughout this chapter we assume approximation 

(3.1) holds. 

3.1.2 Structural and Ecological Models 

The structural model describes the between trial distribution of 0y,-. We construct it here 

in two pieces. We represent the association relating 0y; to 9xi and Zi as 
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Ecological Model: 

p(0yi I 9xi, <p) = N, (fa + Z\pz + /3g(9xi - 70), ry
2|J (3.5) 

The ecological model given in expression (3.5) relates the population treatment effect to 

its population risk and covariates Z{. The coefficient of 0^;, j5g, is named the ecological 

regression slope. Without loss of generality we assume Z,- has mean zero and does not 

include the error term. We do this so the intercepts 0o represents the unconditional mean 

of 0yl- and 9xi. 

We also define a model that predicts the population risk from Zi, by 

Population Risk Model: 

p(0xi | 0 ) = JVi (70 + ^ 7 . - , ^ ) (3.6) 

We use 7 = (70,7j)'- Expression (3.6) relates the population risk to the covariates 

Zi. We define it as a necessity of the estimation procedures in Chapter 4, but it may also 

be found practically useful for investigating which values of Z, are associated with high 

population risk. 

We may express the ecological and population risk models (3.5) and (3.6) as a bivariate 

distribution by 

Structural Model: 

p(9i\<t>) = N2(uo + UzZi,A) 

(( 
= JV2 

V 
A + * A l i A / rl M 

Jl \ 70 + z'rtz j \ fori 

where p, = /3, + $g~1z and r2 = ry,x + /3gTx. Specification (3.7) shows that the 0,- follow 

a multivariate multiple regression with unconditional mean u>o = (/3Q,7O)'- We also point 
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out that, without controlling for 9X{, 0y(- has a normal distribution with mean /30 + Z\pz 

and variance Ty = r2,, + /3$r2. We collect all unknown parameters and denote them by 

<f> = (P',-y',Ty\x,Tx)'. 

3.1.3 Aggregate Model 

Models (3.1) and (3.7) describe the within trial distribution of 0,-, and the between trial 

distribution of 0;, respectively. The between trial distribution of 0,- is given by the marginal 

distribution p(9{ \ <j>) and is expressed by 

p(0i\<f>) = N2(o>o+«>zZi,Xi + A)) 

= N2(("0 + Z'A),( * + T* ****** | | (3.8) 
\ \ 7o + Z'az J y pwioli + pgrl ali + r2 

Expression (3.8) follows from the rules of conditional expectation and variance: 

E(0i | <f>) = EE(9i | 9{,<j>) = w0 + uzZi 

Var(0,- | <f>) = £(Var(0,- | 9{,<j>)) + Var(£(0,- | 0h)) = S,- + A 

Table 3.1 summarizes the measurement, structural, and aggregate models, but expresses 

them with the parameters of the ecological model (3.5). Notice that the aggregate model 

has two sources of variability; the within trial measurement variance £,-, and the structural 

variance, A. The lower right corner of Table 3.1 gives the posterior distribution p(9{ \ 0,-,< )̂, 

which we will find useful in Chapter 4 when we treat estimation. 

Notice that marginally both 0yI- and 9xi follow the random effects model summarized in 

Chapter 2. This means that we may estimate the parameters /3Q, pz and r2 , and 70, ~fz by 

the methods discussed there (for example the method of Morris, 1983b). We will return to 

this point again in Section 3.3 and Section 3.4. 
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Table 3.1: Hierarchical representation of the bivariate normal random effects model. 

Measurement Model (Observed) 

p(0i\9i) = N2(9i,Vi) 

Oi = (Oyi,0xi) 

®i = (0yi,9xi) 

y.-( °li Pwi°ii \ 
h'~\M °li ) 

S; known 
Structural Model 

p(9i\<p) = N2(vi,V 

V' \lo + Z'ifzJ 

pz = pz + paz 

A = 

(rfa + OW We\ 
V fieri rl ) 

0 = (/3,7,ry
2,rx

2)' 

<j> unknown 

Ecological Model (Observed) 

p(0i\<t>) = N2(rU,Zi + A) 

£,- + A = 
( 4 + Tl\x + W* Pwi(& + POTI \ 
V Pwivli + Por* <rli + T* J 

Posterior 

p(9i\9i,<p) = N2(vhW 

Vit = BiVi + (I-Bi)9i 

B, = (S, + A)-1S1-

A? = AB; 
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3.2 Bias 

The previous section decomposed the variability of 0,- into its within and between com­

ponents. We also defined the ecological model relating 0y; to 0xi and Z{. Because we only 

observe 0,- through 0,-, it may be tempting to estimate the parameters of the structural model 

by regressing 0y; on 9xi and Z{. This section demonstrates that this leads to inconsistent 

estimates of the structural model. 

To make this demonstration we first derive the expectation of an individual 0yi- given 

9xi and Z,- and show that the coefficient of Z,- is not Pz and the coefficient of 9X{ is not Pg. 

We then demonstrate that when we use weighted or ordinary least squares methods and 

regress 0y; on 0X; and Z,-, their coefficients do not represent /3. and pg either. The result of 

this demonstration lead to methods that allow us to evaluate the potential for bias prior to 

performing any regression. 

Single observation bias 

Because we assume the aggregate model has a bivariate normal distribution, the expec­

tation of 0yi is linear in 0xi and Z,-, and we express this expectation by 

E(0yl- | 0xi,A) = p0 + Z ^ + p'o
m(0xi - 70) (3.9) 

Var(0yi | 9xi,A) = o*ui + r2
|x + r2(/3fl

2 - (/?#)») - (plmf°li (3-10) 

where we make the definitions 

Poy=pg(l-Bxi) + PwiBxi 

R - ali 
" ~ rl + a2-

X ' xt 

We rewind the reader that in the expressions above axii a^ and /?«,,• are known. The 
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superscript lm means linear model. We derive (3.9) and (3.10) below, but first make a few 

observations. 

Expression (3.9) demonstrates that trials with similar 9X{ do not, on average, have 

their 0yl- fall on the ecological regression line. Because Bxi and pwi are different for each 

observation, then 0yl- follows a regression on 9xi with each observation having a different 

slope and residual variance. How far from the regression line each falls is governed by Bx.,-, 

the population risk "shrinkage factor", and Pwi, the within trial regression slope. Notice 

that 0 < Bj.-; < 1. The magnitude of Bx; indicates how poorly the population risk has been 

measured. With Bx; near zero then 0X{ is well measured, and we can expect 0y>- to fall nearer 

the ecological regression line than if B ,̂- were large. We next demonstrate expressions (3.9) 

and (3.10) by applying the sweep operator on the marginal covariance of (0yi,9x{, Z,'). 

Marginal representation 

In this chapter and the next we will find different representations of the aggregate model 

(3.8) useful. The representation summarized in Table 3.1 conditions on the covariate Z,-, 

but we also find the representation that does not condition on Z; useful. 

Collect all observed quantities together and denote them by Wi = (0yl-,0a..,,ZJ')'. We let 

A,- represent the variance of Z,-, and fiz represents the mean of Z,\ Then Wi has distribution 

Wi\A . 

/ a ^ 
Po 

flu ,*,• 
S, + A + wlAj.Wj iozAzz 

AZZIJ)'Z Azz 

(3.11) 7o 

We can derive expressions (3.9) and (3.10) by applying successive sweep operations to *,-. 

By the associative property of the sweep operator, 



www.manaraa.com

3.2 Bias 32 

Sweep[0x,Z](tf,) 

= Sweep[0x] (Sweep[Z] (*,-)) 

S; + A w.A2J 

A.,w, A22 

= Sweep[0x] 

^ ( a1- + r2 
"yi T 'y 

Sweep[0x] Pwioli + Perl 

Pwioli + Pgrl 

oli + rl 

-lz 

# 

7i 

A,2 

\ \ 

/ / 
/ ^2 , _2 _ ( / W ' + / V j ) 2 ()«„«' +P„T* V _ / W J . + A J T J , \ 

^ H J 

"i+'S 
A « + iS/ 

(3.12) 

(3.13) 

The notation Sweep[0x,Z] means we first sweep the matrix on the pivots corresponding 

to components of Z, and then on 0X. By the properties of the Sweep operator, the first 

column, from top to bottom, of (3.13) contains Var(0yl- | 9xi,Zi,S) and the coefficients of 

(0XI-, Z'i) (for example see Dempster, 1969, page 62). Recognizing that P^ = Y'f "T", 

the single observation bias results follows. 

3.2.1 Bias from a regression estimate 

Expressions (3.9) and (3.10) show that each 0y; follows a linear model in 0X; and Z,-

but where the coefficients are different for each observation. It is not clear then what a 

regression of 0yt- on 0X1- and Z,- estimates. We give those that result in expressions (3.14) 

and (3.15), as a consequence of Theorem 1 which we derive next. 

Theorem 1: Let W{ = (0y;,0x;, Z'i), i = 1 • • -k, have distribution given by (3.11). Let dik 

be a sequence of weights with 0 < dik < 1 and £)i=i îfc = 1. 

/ / 
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(1) max(dik) —* 0 as k —* oo. 

(2) lim^ooELi dik^i = ^>-

(3) The elements ofWi have fourth moments bounded by C < oo. 

(4) * is positive definite. 

then a weighted least squares regression of 0yl- on 0xt- and Zi with weights dik consistently 

estimates a coefficient of 9xi which is 

P<j> = pg(l-^)+PSH1: (3.14) 

and consistently estimates a coefficient of Z, which is 

pii=pz+^:cp\t-po)lz (3.15) 

and consistently estimates residual variance which is 

yls 

where we have defined 

t 

P\l 

Proof: 

Define the sample mean and covariance of Wi by 

lls\2=.2 
= *l+r]lx+TM-wr)-(n2*i (3.16) 

al 
*x + rl 

k 

1=1 

HLxPwi°lidik 

E;=i alid* 

(3.17) 

(3.18) 

(3.19) 
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k 

i=i 
fc 

swk = X) MW - wk)(Wi - wky 
i = i 

k 

= X dik(Wi - fiw)(Wi - fiw)' (3.20) 
i=i 

- (Wk - fiw)(Wk - flu,)' (3.21) 

From (3.11) each term in the summation (3.20) has expectation dik^i, and so by assumption 

(2), the expectation of this sum converges to *. We now show that (3.21) converges in 

probability to zero, and (3.20) converges in probability to <P. 

For any vector A = (ai,a2, • • • ,afc)' with |a,-| < a* < oo, then A'W{ as variance A'9iA 

and by assumption (3) A'\P,yl < C* < oo for some C* < oo. Then by Chebychev's inequality 

and assumption (1) 

P(\A'(Wk - fiw)\ >e)< ivar(i4'(Wfc - fiw)) 
k 

= ^dlV^(A'(Wi-fitu)) 
i=i 

C* max(</lfc) ^ 
= 72 1 , * * 

i=i 

= C* max(rf,'fc) -> 0 

so (3.21) converges in probability to 0. Now let the Im element of Swk be denoted by sk
m, 
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and denote the /-th element of Wi and fiw by Wu and fiwi- Then by (3) and (1) 

Va,x(Slkm) = Var ( £\/,fc(Jy,-, - fiw,)(Wim - fiwm)' 
\ i '= i 

k 

= J2d2kVzv((Wi, - ftwl)(Wim - fiwm))' 
i=i 

fc 
= Cma.x(dik)^2dik 

i=i 

= C max(fZijt) —• 0 

We have just established that Swk —*• $ in probability. Now by assumption (4) 

lim Sweep[0x;,Z](SiyJ = Sweep[0x;,Z]( lim Swh) 
k—>oo fc—>co 

= Sweep[0x,-,Z](W) 

The results (3.14) and (3.15) follows by replacing *,- by * in (3.12). 

• 

In words Theorem 1 states that a linear regression of 0y; on 0X1- and Z,- estimates the of 

9yi as if it were 

E's(0yt- | 0xi, A) = p0 + Z'ip'z
s + (9xi - 7 o ) /# (3.22) 

When dik — !/&, Theorem 1 quantifies the bias that results when we use ordinary least 

squares regression (ols) to estimate the ecological model, otherwise Theorem 1 quantifies the 

bias from weighted least squares regression. We will use superscripts 0,a and w,s to denote 

ordinary and weighted least squares, respectively, whenever we find it useful to distinguish 

these cases, and '" when no distinction needs to be made. 

3.2.2 Discussion of Bias 

Expression (3.22) shows the least squares regression of 0yl- on 0X; and Z,- yields inconsis-

tent estimates of the ecological model parameters. We refer to Tix as the average shrinkage, 
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but it is actually the shrinkage evaluated at &2, the weighted average population risk vari­

ance. We also refer to pw as the average measurement error slope. 
ls 

Because 0 < Bx < 1, the coefficient of 0XI- estimates a quantity between the ecological 

slope, Pg, and the weighted average measurement error slope, P1^. The total bias is Pl
g

s — 

Pg = BX(PI% .— Pg), or 100 X B^% of the difference between the average measurement 

slope and the ecological slope. To have a small proportion of bias Bx must be small, and 

this means that a\ must be small compared to r2 . A bias of 100 X p% or less requires 

vxl
Tl < T^i>- Because Bx depends on the sample sizes nc;, Theorem 1 shows that a 

least squares procedure peculiarly estimates a quantity that depends on the sample size. 

Figure 3.1 gives a representation of these effects for the equal variance case (i.e., with equal 

s;). 

The proportion of bias from an ols is given by B .̂ . A weighted least squares can result 

in more or less bias than the bias from an unweighted procedure. If observations with large 

axi have small rf;, then B^" < Bx , and a weighted least squares procedure has less bias. In 

practice this will often be the case, because both a2,- and ayi depend on sample size, and 

we commonly choose </,- related to l/c2--

Including 0X; in a regression also effects the coefficients of Z,-. Whether the regression un­

derestimates or overestimates the components of Pz depends on the sign of the components 
ls 

of 7 . , and its magnitude depends on B x . 

A few special cases are: 

(1) Pg = 0: When no ecological association exists a least squares regression estimates 

coefficient estimates are 

P'g3 = Pu,Bx (3.23) 

Pl
z°=Pz + B,:pw7z 

Expression (3.23) shows that an association between 0y; and 0X1- may be observed even 
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ecological 

!*regate model 

ecological 

0E1 

Figure 3.1: Example of bias for equal variance case: The solid points represents 0;, and the 
downward sloping dotted line represents the ecological model relating 0y; to 0X,-. Because 
every point falls exactly on the ecological regression line, the ecological model has ry|x = 0. 
The ellipses surrounding the solid points represent the sampling distribution of 0,- around 
their means 0,-, and the upward sloping lightly dotted lines represent the within trial regres­
sion lines. Because the ellipses have the same shape and size, this plot represents the case 
where all E; are equal. The solid line represents the aggregate regression line. Note that 
its slope is between the structural slope and the measurement slope. 

when no association between 0y; and 0X1- exists. The sign of the slope depends on the 

sign of /},„. This result is consistent with the claim made in Chapter 1, that despite 

the observed association in Figure 1.1, there may be no ecological association. 

(2) fiwi = 0: When 0y; and 0XI- have independent measurement error, then fiw = 0, and 

pi?=p0(i - B':) 

Pl°=Pz-B':Pglz 

(3.24) 

(3.25) 

Because 0 < Bx < 1, expression (3.24) shows that | Po \>\ fi0
s |, so we consistently 



www.manaraa.com

3.3 Example: Streptokinase 38 

underestimate structural slopes when pw = 0. We recognize expression (3.24) as giving 

the usual measurement error bias result when error is in the explanatory variable only 

(see for example, Miller, 1986; Fuller, 1987; Davies and Hutton, 1975). Thus the model 

summarized in Table 3.1 may be viewed as a general measurement error model. 

—Is - —Is 

(3) Bx (Pw - Pg) = 0: Eliminating the effects of measurement error requires either Ba. = 0 

or J3\jj = Pg. The former condition occurs when axi = 0, or when we have no population 

risk measurement error. Thus we may reduce the bias by simply acquiring more data 

to estimate the population risk. The latter condition, which implies the equality 

of the ecological slope and measurement slope, occurs only under very restrictive 

assumptions (see Langbein and Lichtman, 1978, for a review). 

Least squares will estimate (3.16) as the residual variance. That expression can be either 

loo large or too small, depending on many factors. We can shown that r2^ is underestimated 

whenever 

( £ ) 2 > 1 - B f (3.26) 

Because the right side of (3.26) is always less than 1, we estimate the residual variance too 

small whenever Pl
g

s > Pg. 

3.3 Example: Streptokinase 

This section uses the streptokinase data to demonstrates the results of the previous 

sections using. We first derive the measurement error model with the large sample delta 

method approximations. We then use Theorem 1 to evaluate the bias we can expect to find 

with an ordinary least squares regression of 0yt- on 0X,\ 
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3.3.1 Estimating the measurement error model 

To make the exposition clearer, we drop the index i in the derivation below. Deriving 

the structural model requires computing E, the measurement error variance. Recall that 

the streptokinase trials measure their outcomes as mortality rates, p = (pt,pc), and so p; 

has variance matrix 

Q Pc(l-Pc) 

We choose log-relative risk treatment effects and log-odds of the mortality rate as the 

population risk. In notation we have 0 = 0(p) = (log f^i),logY j ^ | - ) ) • The measurement 

error variance E is formed by first computing the Jacobian of the transformation 0(fi) by 

using (3.3), which gives 

HP) 
•L _ - L 
Vt Pc 

0 l 
Pe(l-Pc) 

We then estimate the measurement error variance by E = J'(fi)V(fi, n)3(fi) which yields 

/ (irB.) X + (l=£s\ J_ L 
y _ I \ pt J nt ' \ pc J nc Pen, 

\ 

1 1 1 
(3.27) E = 

Pcnc Pc(l-Pc) nc ) 

Note that E has diagonal elements that equal the usual large sample variance approxima­

tions for log relative risk and log odds. We can now determine the within trial regression 

slope pwi 

_ eov(0y,0x) . . 
Pw- var(0x) ~Pc l ( 3-2 8 J 

We typically estimate E; and 0; by evaluating them at p = p, but for the definition used 

here, we cannot compute E or 0 for any trial having pt or pc equaling zero or one. Following 

common practice, for every such ;)(, we replace pt by (ntpt + l/2)/(n ( + 1) and replace nt 
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Table 3.2: Measurement error model estimates for sample of streptokinase data. 
Trial 

1 
3 
5 

11 
12 
15 
17 
23 
28 
33 

Means 

9yi 

0.944 
0.300 
0.149 

-0.128 
-0.190 
-0.263 
-0.354 
-0.560 
-1.099 
-2.565 
-0.451 

9xi 

-2.079 
-1.526 
-1.278 
-2.565 
-1.905 
-1.995 
-0.897 
-0.693 
-1.674 
-1.327 
-1.725 

°~yi 
1.033 
0.304 
0.165 
0.179 
0.051 
0.045 
0.234 
0.546 
1.108 
1.468 
0.577 

Cxi 

1.061 
0.285 
0.158 
0.131 
0.039 
0.033 
0.213 
0.463 
0.629 
0.441 
0.399 

Pwi 
-0.889 
-0.821 
-0.782 
-0.929 
-0.870 
-0.880 
-0.710 
-0.667 
-0.842 
-0.790 

a-0.850 

BXI-

0.656 
0.304 
0.258 
0.427 
0.815 
0.199 
0.121 
0.502 
0.334 
0.560 
60.55 

a weighted .average with weights proportional to o\,. 

average bias evaluated at a\ = 0.225. 

by tit + 1. This is equivalent to adding a single patient to the treatment group and also 

adding half an observation to the number of observed deaths (for other recommendations 

see Mosteller and Tukey, 1977). We proceed similarly for pc. 

The measurement error standard deviations and within trial regression slopes are sum­

marized by Table 3.2. The final row of the table gives numerical averages of the columns 

except for the column containing /?„,,- and Bx; which gives /3°(s and Bx computed by (3.18) 

and (3.17) with d,- = 1. The complete data version of this table can be found on page 48. 

We have just completed estimating the parameters needed to represent the measurement 

error model summarized in Table 3.1. We next demonstrate using these values to assess the 

bias we may expect when performing a linear regression of 0yl- on 0X,-. 

3.3.2 Evaluating the Bias and Estimation 

We now use all k = 33 measurement error estimates to evaluate the bias of the regres­

sion line show in Figure 1.1. Recall that Chapter 1 claimed that measurement error can 
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completely explain the negative association. We we demonstrate that claim quantitatively. 

Theorem 1 states that the observed regression line is pulled away from Pg toward P^3. 

Table 3.2 gives /3°'s = -0.850, and the discussion following Theorem 1 states that if Pg = 0, 

we can expect to observe —0.850 < pjf < 0. Where between these two values the expectation 
ls 

lies depends on Bx , which we estimate next. 

To estimate Bx" we first estimate r j . Recall that marginally 0XI- follows the random 

effects model summarized in Section 2.2, and so the parameters ~/z and r2 can be estimated 

by the methods summarized there. Here we prefer the method given by Morris (1983b) and 

summarized by Section 2.3.2. Morris gives a iterative procedure to estimate r2 . We denote 

its estimate by f2. However, Morris points out that, because shrinkage factors (like Bx) 

are convex functions of r2 , using f2 to estimate Bx will lead to estimates of Bx that are 
ls 

too small. To correct this bias we follow his recommendation and estimate B^ 

§:" = (*Z£4) _£L- (3.29) 
\k-p-3j a* + fl ( > 

In the expression above p represents the number of regressors Z,- (recall that here that Z, 

does not include the constant term). 
zzflls 

For the streptokinase data f2 = 0.179, a2 = 0.225, p = 0, and so Bx = 0.550, and so 

a least squares regression estimates the coefficient of 0X1- 55% of the way from Pg toward 

P°ls. Table 3.4 gives /?°'3 = -0.850, and so if Pg = 0 then we can expect to observe a slope 

pais _ pot"]i°J3 « (_o.850)(0.555) = -0.453. This is very close to the observed least squares 

regression slope, Pfs = —0.482. We have just demonstrated the claim made in Chapter 1, 

that the observed slope can be completely explained by measurement error. 

Notice that Pg is the only quantity in (3.16) that we have not estimated, and so we may 

solve for it and derive an method of moments estimator. Solving this equation for Pg leads 

file:///k-p-3j
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to a 
^LOIS _ 

p r m =Pt'" BZuw (3-3°) 
1-B X 

For the streptokinase data Poh - -0.468, and (3.30) yields f3g
mom = -0.053. The method 

of moments estimator we treat in the next chapter gives (3.30) as a special case. 

3.4 Discussion 

The effect of using aggregates as covariates in meta-analyses in particular and hierar­

chical models in general is apparently not well known. Informally, Sinclair and Bracken 

(1994) point out that it is commonly known that the effects treatments often depend on 

the control group mortality rate. But recently, Lau et al. (1995) and Schmid et al. (1995) 

find that, although this association is very common in over four hundred meta-analyses, 

the association can be most often attributed to measurement error of the kind described 

here, and not to anything ecological, and so that informal observation is perhaps true less 

often than is believed. More formally, articles in statistical journals often use aggregate 

values as covariates without accounting for their effects (for example see Moses et al., 1993; 

Brand and Kragt, 1992; Bryk and Raudenbush, 1992; Gelfand et al., 1990). A few points 

are discussed below. 

3.4.1 Meta-analyses 

Brand and Kragt (1992) found a strong association between the treatment effect and 

population risk estimates in a collection of clinical trials that evaluated /J-mimetics for treat­

ing pre-term labor. Commenting on their result, Senn (1991) showed that for a particular 

choice of 0y; and 0X,-, some of that association could be explained by measurement error, but 

did not suggest a method to correct for it, stating only that, because measurement error 
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can account for some association, "no further explanation is necessary." In response, Brand 

and Kragt (1991) suggest correcting the bias as follows. 

First define 0y; and 0X>- as 

^ tos(rfk)-'°s(r?fc) <3-31> 
s- l0S(A;)+1°s(r^-) <3-32> 

then estimate the association 

Oyi =Po + PAi (3.33) 

with a least squares regression. They argue that the bias is eliminated because specification 

(3.33) eliminates the correlation. Their suggestion has two difficulties: First, even if 0yl-

and 0X1- are uncorrelated, this simply implies that /?„„• = 0, and Theorem 1 assures that 

estimates of P\ are biased toward zero; Second, contrary to intuition, the specification 

above does not remove the correlation. The estimates 0XI- and 0yl- have covariance axyi = 

Var Hog ( r ^ r ) ) - Var flog (j^-J J. Notice that axyi = 0 only when pn = pci or pn -

1 - Pci-

Moses et al. (1993) use model (3.33) for meta-analysis of diagnostic tests, an important 

and recent application of meta-analyses (Mosteller and Colditz, 1994). In their application 

pn and pd represent the true-positive and false-positive rates for diagnostic tests, respec­

tively, and they use model (3.33) to estimate a Receiver Operating Characteristic (ROC) 

curve. Diagnostic tests often have large differences between pn and pd, and so axyl- (and 

thus pwi) may often be extreme for this application, leading to substantial bias (for an 

example diagnostic test meta-analysis with this method see Fahey el al., 1995). 
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3.4.2 Hierarchical Models 

Theorem 1 applies whenever hierarchical models use group aggregates as covariates. For 

example, suppose hypothetically we wish to control for the average age of the patients in 

the streptokinase trials. If risk factors include a patients age, then the population average 

age may be an attractive covariate : perhaps older patients benefit from the treatment? A 

hierarchical model may use age in the following model 

p(9yi\9yi,A) = N(9yi,c72
yi) 

p(0yi\A) = N(Vi,r
2) 

where the linear predictor is 

m = pQ + Pls(Agei-Ag^) (3.34) 

However, if a patient's age is a risk factor then 0yl- and Age; may be correlated within each 

trial. Denote the within trial regression slope with pagc (for simplicity we will assume equal 

effects of age within all trials, so we do not need page to depend on i). Theorem 1 states 

Vi *Po + (Pe(l - Xge) + / W O X (Age; - Agl) (3.35) 

Expression (3.35) shows that hierarchical models that use aggregate values as covariates 

lead to biased estimates of the linear predictor 7/;. This may have particularly important im­

plications for estimating the individual 0y;, an important application of hierarchical models, 

because estimates of 0y; are typically chosen to be between 0y>- and 7?,\ 

It is commonly known that coefficients of group averages do not estimate individual 

effects (belief in the contrary is known as the ecological fallacy, see for example Robinson, 

1995), but expression (3.35) shows that coefficients of group averages do not even estimate 

group effects (for an example of general hierarchical model that use aggregates see Bryk 

and Raudenbush, 1992, who estiamte the association between the average school math 
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score and the schools average student economic status). To estimate group effects with 

aggregates the bias must be corrected or else determined to be insignificant. However, to 

correct the bias we must either know or have information about pwi- For meta-analyses, we 

estimate pwi from the distribution of fii, which we can do because clinical trials give us a 

known distribution of fii. But for other aggregates, such as average age, information about 

Pwi may be unavailable. Thus we must assess the bias. 

—h —Is 

We may assess the bias without /?„,; if we can estimate B x . To estimate Bx we must 

have r2 and weights d,\ Even if we do not know pwi, axi may be known, and we can estimate 

r2 by Morris (1983b), and use the adjustment given by (3.29). Deciding which weights to 

use poses the most difficult problem. 

The bias results of Theorem 1 suggest that we compute B^ with d,- oc l/(o-yi + r2 . .). 

However, recall that we cannot estimate f2, if we do not know pwi. We may however, 

compute a lower bound for Bx
 3. Because r2,x < r2 , estimating Bx with d; a l/(c2

1- + f2) 

yields a lower bound for assessing the bias. We can estimate r2 because, as we pointed 

out at the end of Section 3.1, 0yi- given Z; follows the random effects model summarized in 

Chapter 2. If we do this and estimate Bx as small, then if we can also trust that the pm-% 

are not too large, then we may proceed with using the aggregate as a covariate. Otherwise, 

it should not be used. 

3.4.3 Summary 

This chapter constructed a hierarchical model that incorporates the treatment effect, 

the population risk, and covariates Z,-, and can be viewed as an extension of the random 

effects model summarized in Table 2.3. We demonstrated that the coefficients from a least 

squares regression that includes the population risk as a covariate inconsistently estimates 

the coefficients of the ecological model. Quantification of the bias leads to a simple method 
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of moments correction for the bias (3.30), and also allows us to evaluate the bias even when 

we cannot correct for it. The next chapter considers additional methods to estimate the 

parameters of the structural model. 
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Table 3.3: Data from nine clinical trials evaluating intravenous magnesium for treatment 
of AMI. The columns are: the treatment and control group mortality rates, pt and pc\ 
the treament and control group sample sizes, nt and nc; the treatment effect estimate in 
loog relative risk, 0y = log(pt/pc); a measure of the risk of mortality, 9x = logit (pc); the 
standard errors of the treatment effect and control group risk, at and cy; the within trial 
regression coefficient for estimating 0y from 0X, pm. The data are sorted by 0y. The final 
row gives the unweighted means of the columns. 

Source 

Feldsted 
ISIS 4 

Abraham 
LIMIT 2 

Morton 
Rasmussen 

eremuzynski 
Schecter'95 

Schechter 
Means 

Pt 
0.067 
0.078 
0.021 
0.078 
0.025 
0.067 
0.040 
0.043 
0.017 
0.048 

Pc 
0.054 
0.072 
0.022 
0.103 
0.056 
0.170 
0.130 
0.173 
0.161 
0.104 

nt 

150 
29901 

48 
1150 

40 
135 
25 
96 
59 

3511 

nc 

148 
29039 

46 
1150 

36 
135 
23 
98 
56 

3414 

Oy 

0.210 
0.080 

-0.043 
-0.271 
-0.799 
-0.938 
-1.182 
-1.384 
-2.249 
-0.730 

0X 

-2.862 
-2.556 
-3.807 
-2.169 
-2.833 
-1.583 
-1.897 
-1.561 
-1.653 
-2.324 

^y 

0.460 
0.029 
1.399 
0.134 
1.203 
0.374 
1.118 
0.527 
1.037 
0.697 

o~x 

0.364 
0.024 
1.011 
0.097 
0.728 
0.229 
0.619 
0.267 
0.364 
0.411 

Pm 
-0.946 
-0.931 
-0.978 
-0.897 
-0.944 
-0.830 
-0.870 
-0.827 
-0.839 
-0.895 
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Table 3.4: Complete streptokinase data with columns: treatment and control group mor­
tality rates, pt and pc, and sample sizes, nt and nc\ treatment effect, 0y = \og(ptlpc)\ 
population risk, 0X = logit (pc)\ standard errors of 0yt- and 0X;, ffj and ax; within trial 
regression coefficient, Pw. The final row gives the unweighted means of the columns-

Trial pt pc nt nc 0y 9x ay ax pw 

"1 
2 
3 
4 
5 

a6 
7 
8 
9 
10 
11 
12 
"13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
"23 
24 
"25 
26 

a27 
"28 
"29 
30 
"31 
32 
633 

0.286 
0.132 
0.241 
0.100 
0.253 
0.048 
0.224 
0.116 
0.109 
0.126 
0.063 
0.107 
0.156 
0.098 
0.092 
0.185 
0.203 
0.063 
0.086 
0.115 
0.105 
0.077 
0.190 
0.061 
0.077 
0.127 
0.036 
0.053 
0.077 
0.049 
0.083 
0.019 
0.000 

0.111 

0.056 
0.179 
0.082 
0.218 
0.043 
0.214 
0.115 
0.113 
0.137 
0.071 
0.130 
0.192 
0.126 
0.120 
0.263 
0.290 
0.096 

0.138 
0.189 
0.173 
0.127 
0.333 
0.122 
0.167 
0.279 
0.083 

0.158 
0.273 
0.200 
0.364 
0.107 
0.200 

14 
53 
83 
219 
249 
21 
49 
164 
55 
302 

859 
5860 
32 
264 

8592 
373 
123 
191 
35 
156 
352 
52 
21 
49 
13 
102 
28 
19 
13 
41 
12 
107 
29 

9 
54 
84 
207 
234 
23 
42 
157 
53 
293 
882 

5852 
26 
253 

8595 
357 
107 
177 
29 
159 
376 
55 
21 
49 
12 
104 
24 
19 
11 
25 
11 
112 
30 

0.944 
0.866 
0.300 
0.201 
0.149 
0.091 
0.047 
0.010 
-0.037 
-0.082 
-0.128 
-0.190 
-0.208 
-0.250 
-0.263 
-0.353 
-0.354 
-0.424 
-0.476 
-0.492 
-0.498 
-0.504 
-0.560 
-0.693 
-0.773 
-0.783 
-0.847 
-1.099 
-1.266 
-1.411 
-1.473 
-1.746 
-2.565 

-2.079 
-2.833 
-1.526 
-2.414 
-1.278 
-3.091 
-1.299 
-2.044 
-2.058 
-1.845 
-2.565 
-1.905 
-1.435 
-1.932 
-1.995 
-1.029 
-0.897 
-2.242 
-1.833 
-1.459 
-1.565 
-1.925 
-0.693 
-1.969 
-1.609 
-0.950 
-2.398 
-1.674 
-0.981 
-1.386 
-0.560 
-2.120 
-1.327 

1.033 

0.662 
0.304 
0.308 
0.165 
1.382 
0.397 
0.309 
0.544 
0.211 

0.179 
0.051 
0.575 
0.249 
0.045 
0.140 
0.234 
0.362 
0.721 
0.276 
0.192 
0.596 
0.546 
0.678 
1.157 
0.303 
1.193 
1.108 
1.080 
0.797 
1.037 
0.752 
1.468 

1.061 
0.594 
0.285 
0.253 
0.158 
1.022 
0.376 
0.250 
0.434 
0.170 
0.131 
0.039 
0.498 
0.189 
0.033 
0.120 
0.213 
0.255 
0.539 
0.203 
0.136 
0.405 
0.463 
0.436 
0.775 
0.219 
0.739 
0.629 
0.677 
0.500 
0.627 
0.306 
0.441 

-0.889 
-0.944 
-0.821 
-0.918 
-0.782 
-0.957 
-0.786 
-0.885 
-0.887 
-0.863 

-0.929 
-0.870 
-0.808 
-0.874 
-0.880 
-0.737 
-0.710 
-0.904 
-0.862 
-0.811 
-0.827 
-0.873 
-0.667 
-0.878 
-0.833 
-0.721 
-0.917 
-0.842 
-0.727 
-0.800 
-0.636 
-0.893 
-0.790 

Mean 0.114 0.166 561 558 -0.451 -1.725 0.577 0.399 -0.834 
*: smallest nine trials,6: calculated as if i/30 
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Chapter 4 

Normal Model Estimation 

Chapter 3 represented the treatment effect and population risk in a normal hierarchical 

model, and demonstrated the difficulty when using the population risk to explain treatment 

heterogeneity. To use the population risk as a covariate correctly, we must account for 

the measurement error attenuation. This chapter proposes three methods to do that by 

estimating the structural parameters of the normal hierarchical model. First, we derive a 

simple method of moments estimate that generalizes the simple estimate given at the end 

of Chapter 3. In the next section we treat likelihood based inference and derive maximum 

likelihood and Bayesian estimation procedures. The method of moments and likelihood 

inference sections can be read independently. A separate section points to several issues 

that need to be considered when using these procedures. We then demonstrate each of the 

methods with the streptokinase data. 

Recall that the normal approximation to the measurement error does not hold for nearly 

half of the streptokinase trials, and so we should not have complete confidence that the pro­

cedures derived here work well for those data. We demonstrate the effect of the small 

trials with a simulation study. The simulation study evaluates the performance of these 

procedures when the data have true normal distribution and when the data do not. The 

results show that when errors are normally distributed these procedures perform well, and 
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give nearly unbiased estimates of Pg, and truthful 90% and 95% confidence intervals. When 

errors are functions of binomial distributions the normal model admits significant bias, and 

may even increase the bias compared to using least squares methods that ignore measure­

ment error. Thus for adequate analysis of the streptokinase and magnesium trials, we must 

move beyond the normal model. 

4.1 Method of Moments Estimates 

Expressions (3.14) and (3.15) of Theorem 1 lead immediately to method of moment 

estimators given by 

tils _ TJ 5 ( S 
pmom _ P ^Pw ( 4 1 ) 

1 - B X 

pTm =PZ- %(P'J ~ Pi™)% (4.2) 

•Is -

Recall that: /3 represents the estimated coefficient of 0X,-, and Pz represents the estimated 

coefficient of Z,- that results when we regress 0y; on 0X1- and Z,-; j z represents the coefficient 

of Z; when we regress 0X; on Z,-; and Bx is (3.17) evaluated at fx. 

These estimates follow immediately from the statement of Theorem 1, which decomposed 

the bias due to a measurement error component into its effect on coefficients measured 

without error, Z,-, separate from its effect on those measured with error, 0X1-. Although this 
ls 

decomposition conveniently represents the propensity for bias in a single value, B x , we do 

not find it convenient for estimating purposes, nor is it clear how to assess its standard 

error. Here we re-express the results of Theorem 1 as a single expression. 

Re-expression of Theorem 1 bias results 

As with Chapter 3, we find an alternative representation of the aggregate model more 

useful for deriving the method of moments estimate. We proceed in similar manner to the 

derivation of (3.13), and treat the marginal distribution of 0y;, 0X;, and Z,-. 
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We collect the predictors 0xt- and Z,- together as Xi = (0X1-, Z'i)' and represent their true 

values by a:,- = (0X,-, Z,), and denote X = (Xi,X2, • • • ,Xk)'. We will denote the regressors 

and predictand together by W{ = (0y,-,X1')
/ and their true values by w,- = (0yl-, &•(•)'. We use 

p to represent the dimension of Z,-, but p' = p + 1 to represent the dimension of W{. We 

think of the observed quantity Wi as w,- measured with error. Because Z,-, a component 

of both X{ and a-,-, does have measurement error, it may be convenient to think of Z; as 

having measurement error with zero variance. We can re express the measurement error 

distribution (3.1) by 

Wi\Wi,6. Wi = , £ ; = (4.3) 
°~yi Pwi^xxi 

i ^xxiHwi 2-*xxi 

The measurement variance cr2- has the same definition used in Chapter 3. The sub-matrix 

Exxl- represents the error variance for the predictors A',-, and the Pwi represent multivariate 

versions of the within trial regression slope. To make the present specification equal to (3.1) 

we set to zero all components of EXXI- and Pwi that correspond to elements of Z,-. 

We re-express the structural model (3.7) by 

, , f ( fh\ A ( K &A, 
m I <p = p-w= I , A w = \ 

y fix J \ Axxp., 

where the parameter Px = (P'z,Pg)' represents the coefficients of the ecological model. Then 

Wi has marginal distribution given by 

'xJYxx 

A x x 

(4.4) 

Wt\<p = flw = 
, ^ i + A2 

,E,- + A I B = | m J 

^-•xxiPwi "r AXXPX 

Pwi"xx "T PXAX ^x'^-xx 

2-ixxi T A x x 

(4.5) 

Keeping with the notation in Chapter 3, we define B x = (Exx; + Axx) 1£xx,-, a multivariate 

shrinkage factor. 
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The marginal model (4.5) allows us to re-express the single observation bias (3.9) by 

E(0y; | Xi,<j>) = fiy + (Xi - fix)'(Exxi + Axx)-
l(ZxxiPwi + Axxpx) (4.6) 

= ,iy + (X{ - fix)'(BxiPwi + V- &xi)Px) (4.7) 

As with Theorem 1 on page 33, we let d;, i — 1 • • -k, represent a set of weights summing 

to 1, and denote the weighted sample variance of Wi by Sw, and £ represents the weighted 

mean of the £,-. Theorem 1 states that Sw consistently estimates E+Aw, and a least squares 

regression will with weights d,- estimates regression coefficients represented by Sweep[X](E+ 

A). Thus we may now re-express (3.14) and (3.15) simultaneously by 

E(0yi | X, <p) = fiy + (Xi - fix)'(Bxp'w + (I- BX)PX) (4.8) 

Representing a submatrix of E by £x x , then B x = (Exx-f-Axx)-1Exx represents a multivari­

ate version of the average Bx , and we define Pw so that T,xxpw = £ X ;̂=i Exxl/3,„,-. Again, 

we accomplish this by setting to zero components of pw that multiply Z,-. 

Expression (4.8) restates Theorem 1, except that here we do not separate the bias into 

components associated with 0X; and those associated with Z,-. 

Theorem 1 states that Atu = Sw — £ consistently estimates A„,. We use notation B x 

to represent B x evaluated at Axx, a submatrix of Aw. Letting us denote the coefficient 
- Is 

estimate of Xi by px , then equating it to the coefficient of Xi in (4.8) and solving for Pg, 

we get the following method of moments estimate 

Method of Moments Estimate 

pTm=(i-%ri(pl:-%pw) (4.9) 

We may express the standard error of (4.9) in terms of the standard error of Px by 

Vmom = (1- t x ) " 1 Var(/3i*)(J - t x ) " 1 (4.10) 
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where Var(/3X) gives the variance of the least squares estimator. However, we may not 

use the standard error estimate of J3X given to use by a regression package. Least squares 

methods estimate variance by Var(/3;s) = a2(X'DX)~x, where a2 represents the mean 

squared error of the residuals Y{ — X{Pls. But by (3.35), X-P,s is not the expectation of 

0y,-. This causes the mean squared residuals to be too large, and the least squares estimate 

of variance to be too large also. We may derive the standard error of P\3 using "sandwich 

estimators" Liang and Zeger (1986), as follows. 

We first recognize that the right hand side of (4.7) estimates the mean of 0y,-. That is, 

letting us denote the right side of (4.7) by r]yi, then Ri = 0y; — 7yyl- gives its error term. If we 

use fa to denote 7?,- evaluated at A,,, and Xi, then Ri = 0yt- — 77y; is a consistent estimate of 

the error term R{. We use R = diagonal(ii;,R<i,•-•,Rk) to denote a diagonal matrix with 

diagonal elements Ri. follows. 

The residual variance for 0yl- is Var(0y; | 0X1-, Z,-,d>), which is given in (3.10) on page 30. 

Denote its value as Vi, and let V be a diagonal matrix with diagonal elements Vi. Then by 
-Is 

definition the variance of /3X , is expressed as 

Var (p'x ) = Var ((X'DX^X'Dfl , , ) 

= (X'DX)-1X'DVD'X(X'DX)_1 

Notice that the residual variance V; is different for every observation, and depends on 

unknown parameters. We may plug in point estimates to compute the VJ, but we find it 

more convenient to express the standard error using sandwich estimates of variance (Liang 

and Zeger, 1986, see). Because R{ consistently estimates Ri, we may replace V by RR' and 

so 

Var (^) = —^-7(X'DX)-1X'DRR'D'X(X'DX)-1 (4.11) 
K ~~ J) 

is consistent for Vis. Substituting (4.11) into (4.10) gives us our standard error estimate. 



www.manaraa.com

4.2 Likelihood Inference 54 

The estimator (4.9) is mathematically equivalent to the estimator given by Fuller 

(1987)1. For other estimators of variance that treat more restricted conditions, such as the 

case with uncorrected or equal measurement error variances (see Seber, 1977; Davies and 

Hutton, 1975). 

4.2 Likelihood Inference 

The measurement and structural models, and so the aggregate and posterior models, 

summarized in Table 3.1 have normal distribution. Direct likelihood inference for d> is made 

through the observed likelihood that results from A: observations from the aggregate model 

L(4> | 0) oc p(0 | d>) 

a l[p(9i | </») 

k 

a J ] I £,• + A I"1/2 exp {(0,- - ,,.)'(£,- + A)"1^,- - Vi)} (4.12) 
i'=i 

To compute maximum likelihood estimates we must find the mode of (4.12), and to compute 

standard errors we must evaluate the second derivative of its log at the mode. Bayes pro­

cedures make inferences from (4.12) multiplied by a prior distribution p(<p). Because of the 

manner that A and Pg enters the likelihood, direct application of Bayes rule or maximization 

will be difficult. Here we make use of missing data methods, the EM (Dempster et al, 1977) 

and data augmentation (Tanner and Wong, 1987) algorithms to make inferences for d> by 

treating 0,- as missing data (for good tutorials on these methods see Gelman et al. (1995), 

and for an example of their use on a simpler version of this model see Mcintosh (1996)). 

Preliminaries 

'Fuller (1987), page 183, provides a complicated variance estimate, but there is an error (probably a 

typo) in his statement of the estimate. The error is apparent because the dimensions of matrix products 

and the end of the theorem do not conform. I have not been able to determine what the estimator should 

be. 
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Although we find it difficult to make inferences from (4.12) directly, we find that indirect 

methods are simple. We notice that if 0 = (9\,02, • • •, 0k)' were observed, then we would 

straight forwardly perform both maximum likelihood and Bayes inferences procedures. Al­

though we do not observe 0,-, if we knew d> we could predict them. Recall from Table 3.1 

that, 

p(9i\9i,<j>) = N(9lA1) (4.13) 

(see Table 3.1 for definitions of 0* and A*). Both the EM and data augmentation algorithms 

make use of this structure. 

4.2.1 Maximum Likelihood Estimation: EM-Algorithm 

We follow the notation from Section 4.1, and we let W{ = (0y,-,0xl-,Z('), i = l---k 

represent the observed data, and w; = (0yl-,0x,,Z,'), i = l---k will be called the missing 

data. Together the values (Wi,Wi),i = 1 • • -k are called the complete data. 

Because the structural model has a linear expectation with normal error, if we observed 

the complete data we would estimate d> from with the sufficient statistics w = £ ]Ci=i wi 

and ww1 = £ £;=i w,w,'. Because the sufficient statistics depend on unobserved data we 

call them the complete data sufficient statistics (we borrow these terms from Dempster 

et al., 1977). Note too that if <j> were known, we could predict the complete data sufficient 

statistics conditional on the observed data W and d> using (4.13). 

The EM algorithm maximizes the observed likelihood (4.12) by alternating between 

computing the expected complete data sufficient statistics (E-step) and computing maxi­

mum likelihood estimates from them (M-Step) as follows. Let <p^n' represent an estimate of 

the structural parameter d> ('n' means the n"' iteration). The EM algorithm proceeds by 

first computing the E-Step as if <j> = </>'"'. 

E-Step: 
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1 k ( fff \ 

!,W = E(w\0,<p = <t>W) = ±Y/\ ' 
•=i \ Zi J 

_ 1 k ( 

E(w^n) \0,<p = <I>W) = JYJ 
0?0f + A* 9*iZ\ 

. Z,-0* z,z,-

(4.14) 

(4.15) 

The 'starred' terms above are defined in Table 3.1 (lower right corner), and we evaluate them 

at d> = d>'"'. With these expected sufficient statistics, the M-Step updates the parameter 

d>'n+1' by computing the maximum likelihood estimate of d>. Letting Sw = unu' — 

w^w '"', we complete the M-Step by setting d>'n+1' to 

M-Step: 

4" + 1 ) = 9" (4.16) 

/ A(»+i) ^(n+i) \ 
Sweep[Z](5(„»)) = (4.17) 

\̂  w<n+1) Z'Z"1 J 

Iterating between the E-Step and M-Step gives a sequence of parameter estimates 

0("),^(n+1),.. • that converges to a value that maximizes (4.12). We assess convergence 

by computing the log of the observed likelihood (4.12) after each iteration, and monitor­

ing its increases. Dempster el al. show that the observed likelihood increases after each 

step, and so when the successive increases become small, we conclude that the algorithm 

has converged. Standard errors can be computed by the SEM algorithm (Meng and Rubin, 

1991), but in this manuscript we prefer to estimate standard errors by computing numerical 

second derivatives of the log of the complete data likelihood (4.12) around its mode (for 

example Gelman et al., 1995, page 273). Once the EM algorithm finds the mode, computing 

numerical derivatives on a computer is quick and efficient. 
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4.2.2 Bayes Estimates 

For Bayes estimation we wish to investigate the posterior distribution proportional to 

the observed likelihood (4.12) multiplied by some prior, p(<p). Because this does not have a 

convenient closed form, we estimate it by simulation, using the data augmentation algorithm 

(Tanner and Wong, 1987). The data augmentation algorithm is a Markov Chain Monte 

Carlo (MCMC) algorithm and a special form of a Gibbs Sampler (see Gelfand and Smith, 

1990, for an overview of MCMC methods). The steps of the data augmentation algorithm 

have analogies to the EM algorithm, where instead of computing expectations of missing 

data (E-Step) and computing maximum likelihood (M-Step), we simulate the missing data 

(Augmentation Step), and simulate parameters (Parameter Step). 

Notice that if d> were known, then we could simulate 0,- from (4.13) by 

Augmentation Step: 

0ir.p{9i\9i,(j>)=.N(9*i,A1) 

Conversely, if 0 — (0\,02,--% ,0k)' were observed, then the posterior distribution p(d> | 

0,0, d>) has a familiar form. We represent a normal density with mean fi and variance E as 

G'(- | fi, E). To improve readability we let its dimension be implied by the dimension of fi. 

Define the linear predictors r)yi = X-P, t]xi = Z[-y. Then we compute the parameter step 

by 

Parameter Step: 

p(<j,\0,0)<xp(<l>)p(0\0,<p)p(0\<p) 

^p(4>)p(0y\0z,<j>)p(0z\<t>) 
k ' 

oc p(<t>) t[{G(0yi | Vvi, r2)G(9xi | Vxi, r2)} (4.18) 
i = i 

The term involving 0 drops from the derivation above because it does not depend on 

unknown parameters. Because the structural model is defined by the product of two linear 
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regressions, the parameter step derivation involves two successive posterior computations 

of a normal linear model, and can be found in many standard texts (see for example Box 

and Tiao, 1992, pll4). We derive the exact form of p(<j> \ 0,0) in Section 4.2.2. 

The data augmentation algorithm alternates between the augmentation and parameter 

steps. First, with a current parameter d>'"' ('n' meaning the nth iteration), we impute the 

missing data by 0,- ' ~ ;J(0,- | 0,-,d> = d>("'), i — 1 • • -k, as described in the augmentation 

step. We denote the values imputed with parameter <p by 0^n\ Second, we update the 

parameter d>("+1> by simulating d>("+1> ~ ;;(</> | 0 = 0^,0) (shown below). The sequence 

d>(J), </»(2', d>(3),..., converges to the posterior distribution p(d> \ 0). 

The choice of a starting value and assessing convergence for MCMC methods is very 

important. Here we use the method prescribed by Gelman and Rubin (1992) (see the 

companion piece by Geyer, 1992, for a different view). We outline that recommendation in 

Section 4.2.3. 

Derivation of the parameter step 

Before we derive the parameter step, we first define some notation. We find it most conve­

nient to express the posterior distribution including the constant term in the predictors, so 

use Zi = (1, Z'i) and denote the predictors 0X; and Z,- together as £,• = (Z,-,0X>). We also use 

Z = (Z\,Zi, •••, Zk)' and x = (x\,X2, • • • ,%k)', and represent the dimension of Z,- as p and 

the dimension of A",- as p' = p+ 1. We use the following recognizable definitions from linear 

models: p, the estimate of /3, Ha = (x'x) - 1 , and s2, estimate of residual variance from a 

regression of 0y; on x;; 7, the estimate of 7, H^ = (Z'Z) - 1 , and s2 the estimate of residual 

variance, from a regression of 0X1- on Z;. Finally, we use IG(T2 \ 5/2, q/2) to represent the 

inverse gamma density given by 

IG(T2 I S/2,q/2) « ( 1 ) f_1 exp (-£1) d (1) (4.19) 
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The likelihood portion of (4.18) can factor into components containing the sufficient 

statistics given by (see Box and Tiao, 1992) 

L(d> | 0,Z) oc Y[{G(9yi | Vyi,r2)G(9xi | 7/xl-,r
2)} 

t=i 

a G(P | p,r2
y]xTh) x IG(T^ | ^ S - , * Z | + 2 } (4.20) 

X G( 7 | 7,rx
2/?7) X 7G(r2

|x | i ^ K , * z £ ± * ) (4.21) 

Expression (4.20) factors the ecological model, and (4.21) factors the population risk 

model. We often find it convenient to choosing our priors from the class of conjugate priors 

because they lead to simple expressions for the posterior distributions. That is, if we choose 

priors given by 

p(<f>) = G(P | p°, Ep) X IG(T2
1X | «y,x/2,qy]x/2) X G( 7 | 7°, £7) X IG(r2

x | 6x/2, qx/2) 

then the prior combines with the likelihood to produce the posterior distribution described 

by 

T2„IG{T2, f, + ( * - P ) 4 ± ± k z l ) ( 4 > 2 2 ) 

7 | r x
2 ~ G ( 7 | 7 * , £ ; ) (4.23) 

T2 „ TC(T2 | g»l* + ( * - P K | » <ly\x + k~p\ . . 
Ty\x ~ 1(j\Ty\x I jj ' 2 ' ^ ' 

7 | r 2 ~ G ( 7 | 7 * , S ; ) (4.25) 

Parameters /3° and E/3 represent the mean and covariance of P, and 7 0 and E7 represent 

the prior mean and covariance for 7. With uniform priors for P and 7, then P* = p and 

7* = 7. Otherwise, 

/T = B^/30 + (/ - Bp)p (4.26) 

££ = r^HpBp (4.27) 
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and 

7* = B77° + ( / - B 7 ) 7 (4.28) 

S; = rx
2//7B7 (4.29) 

where 

B0 = (Hprl + Vf>)-lHfiTl (4.30) 

B ^ / V ^ + E x T 1 / ? ^ (4-31) 

4.2.3 Evaluating Convergence 

For the present discussion we use 9 to denote a generic parameter. When assessing 

convergence of an MCMC algorithm we use the method prescribed by Gelman and Rubin 

(1992) (for a good tutorial see Gelman et al., 1995, p331). Instead of using a single MCMC 

sequence, they use J independent sequences, each with a different starting value (that is, 

each has a different 0(1'). We use 0J. to denote the i-th iteration from chain j . Thus we 

have J independent sequences 0J ', 0J , • • • , 0J , for j = 1 • • • J, and each converging to the 

target posterior distribution. But because they were started at different values, all samples 

together are more variable than the target distribution because they contain within and 

between sources of variability. When the chain converges, the between sequence variability 

should be undetectable (that is, the distribution should be independent of its starting point 

if it has converged). Gelman and Rubin use this to assess the chains convergence as follows 

After each chain completes 2ra iterations we examine the final half, for last n draws 

from each chain. For each sequence we compute its mean, which we .denote by Sj, and its 

variance, which we denote s2, and also the grand mean of all J sequences, which we denote 
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0. From these we compute the within and between sequence variance components by 

J = I 

J 
n 

i = i 

The quantity By measures the total variability within each sequence around the grand 

mean. The quantity Wy measures the total variance of each sequence around the individual 

means. Now define the quantity 

Var(0) = 1^—^WV + -B 
n n 

Gelman and Rubin assess convergence by computing 

v W ^ «•»> 
and stopping the MCMC algorithm when V R becomes small. They recommend stopping 

when yR < 1.2, but with our analyses we use \/R < 1.1. 

Intuitively, this rule stops the sequence when the within sequence variance dominates 

the between sequence variance. The expression (4.32) gets small as n —*• oo, and as the 

means from the J sequences come to agree about the posterior mean of 0. 

4.3 Discussion 

The behavior of the estimating procedures can be understood by examining the simple 

method of moments estimator (3.30) on page 42. That expression can be rewritten as 

dpls _ 
pmom = Pe° ~ B , Pu, ( 4 3 3 ) 

1 - B X 

= (/JjT-!?'&,) (l + 2f) (4.34) 
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The estimate of 1/rJ determines how far we estimate Pg from the observed slope, Pg3. 

This is true empirically, and we can also see this in the simple methods of moments estimate 

(4.34). If 1/r2 has small value, then the second factor on the right side has value near one, 

but as r2 gets small, the second factor approaches oo. 

Also, if 1/r2 has large value then the uncertainty of inferences for Pg increases. Expres­

sion (4.34) demonstrates this because as l / rx increases, the second factor on the right hand 

side, a multiplicative factor for Pg", increases as well. There is also intuition for this result. 

If Pg is the coefficient of a simple linear regression model then its uncertainty is determined 

by the ratio of the residual variance and the variance of the covariate; here T?, /T^. Because 

both of these effects (bias adjustment and variance) depend on 1/r2, the inference for this 

parameter is very important when estimating Pg. In particular, we find inferences for Pg 

sensitive to small values of r2 . 

The maximum likelihood and method of moments procedures may estimate r2 as zero (or 

negative), especially with small k. When this happens the estimates are invalid, because 

this implies that the ecological regression has a vertical line. But even when maximum 

likelihood or moment estimates have r j < 0, the likelihood supports larger values of r j and 

the Bayes estimates are valid. When this occurs, we may either conclude that heterogeneity 

in the control group does not exist, or we must use the Bayes estimates. With small k we 

prefer the Bayes estimates. 

With large k all reasonably vague priors result in similar inferences, but with small k 

inferences for Pg are sensitive to the choice of Sx and qx. With 8 = 0, (4.19) provides 

two candidates that may be considered as vague prior distributions2; prior 1, uniform on 

the standard deviation (q = —1), and prior 2, uniform on the variance (q = -2). Prior 2 

places weight on larger values of r2 than does prior 1. If we choose prior 1 or 2 for r2 , the 

Jeffreys' prior, which is uniform on log(r2), and corresponds to (4.19) with q = 0 and 6 = 0 docs not 

lead to a proper posterior. See DuMouchel and Waternaux (1992) for a discussion. 
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Bayes procedure typically estimate rx larger, and results in smaller bias adjustment, than 

the maximum likelihood procedure. Prior 2, because it places weight on larger values of 

T2, typically results in less bias adjustment than prior 1. Previous work (Mcintosh, 1996; 

Schmid et al., 1995) suggests using fly|x = Sx = 0, 6y\x = - 1 (uniform on ry|x) and 6X = —2 

(uniform on r2) as reference priors. 

We can also choose parameters 6 and q to represent informative opinion. If we express 

opinion in the form of a mean and variance, or two prior quantiles (for example the 1st and 

99th), S and q are chosen so that (4.19) matches this opinion (see Gelman et al. (1995), 

pages 139-140, for a discussion). 

The model constructed in Chapter 3 has a bivariate normal hierarchical representation, 

and there exist many currently available packages to estimate such models (see for example 

Bryk and Raudenbush, 1992; Everson, 1995). Many of these may not be useful for the 

model we treat because our estimand is the ratio of two variance components. To use 

those methods for ecological inference they must estimate the components of the structural 

covariance matrix, A, but also provide the means necessary to estimate the uncertainty of 

their ratios (a ratio of variance components defines Pg). Also, many methods are primarily 

concerned with making inferences for the mean parameters CJ, and their procedures are 

tuned so that these estimates have good frequency properties. In particular, Bayes estimates 

will typically use prior distributions that are in some way uninformative for A, but that 

may lead to informative priors for Pg, and so may not have good frequency properties when 

estimating Pg. 

4.4 Data Analyses 

Here we demonstrate the normal model estimating procedures on.the complete strep­

tokinase data. Recall that the normal model should be assumed valid only for clinical trials 
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that have outcomes pn, pd and samples nn and nci large enough for the normal approxima­

tion to hold. Here we analyze the entire data set, and include even those that do not fit this 

criteria, because we will follow this section with another that uses these data to evaluates 

the procedures. We wish to make it clear that in practice these procedures should not be 

applied to similar data without considerable evaluation of the procedures performance for 

that particular data set. The simulation results of the following section show that these pro­

cedures applied to data with nonormal measurement errors can introduce bias that exceeds 

that caused by error attenuation. 

4.4.1 Streptokinase Data 

We apply each estimating procedure to the streptokinase data. For Bayes estimates we 

use the convergence assessment method described in Section 4.2.3 with J = 5. We find 

for these data that each sequence running 2,000 iterations is more than enough to meet 

our convergence criteria (i.e., produces v R < 1.1). So the Bayes estimates given below 

represent the summaries of 5,000 simulated values (from the second half of each sequence). 

We use priors uniform on /3, 7, and as recommended Section 4.3, uniform on ry|x and rx . 

Table 4.3 on page 75 summarizes the Bayes, maximum likelihood, and method of mo­

ments estimates of the streptokinase structural model. For comparison, that table also 

provides the ecological model estimates that result when ignoring the measurement error 

and including the population risk as a covariate in a random effects model. Figure 4.1 plots 

the ecological regression lines that Table 4.3 summarizes. 

The random effects model estimates an ecological slope of-0.178, and is statistically sig­

nificant (one sided p-value=0.036). Thus ignoring measurement error leads us to conclude 

that an association between the effect of treatment and the population risk exists. The 

structural procedures give a different conclusion. Each structural model estimating proce-
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Figure 4.1: Estimated ecological models for the streptokinase data. 

dure agrees about the structural slopes magnitude, giving point estimates very close to zero 

and interval estimates that contain Pg = 0 (see caption of Table 4.3 for a description of the 

interval estimates). Figure 4.1 displays each of these estimates, showing nearly horizontal 

ecological legression lines. Notice that the maximum likelihood procedure gives narrower 

confidence intervals than does the Bayes procedure. We find that this typical for all data 

analyses in this manuscript and elsewhere (see Mcintosh, 1996). Figure 4.2(a) shows the 

ecological slope posterior distribution to have normal shape, and saddles Pg = 0. We con­

clude from these results that there does not exist an ecological association for streptokinase. 

To evaluate the overall effect of streptokinase we examine the estimates of Po, the mean 

treatment effect. Each procedure gives interval estimates that exclude Po = 0, and so 

we have confidence that 0yl < 0 on average. We may also evaluate how likely we are to 

find some future trial, 0*, having 0+ > 0. If no structural association exists then 9ft has 

normal distribution with mean Po and standard deviation Ty\x. Only the Bayes procedure 

estimates ry|x > 0 and suggests that heterogeneity still exists after controlling for population 
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risk. The data augmentation procedure provides us with a convenient method for answering 

this question. 

We express the risk of finding a trial harmful by P(6fi > 0 | 0), but if d» were known then 

we evaluate the risk by P(0f{ > 0 | d>), which we may calculate from a normal table. Without 

knowing d> we express that risk as P(0fi > 0 | 0) = E(P(0ft > 0 | <j>)) where we take the 

expectation with respect to the posterior distribution p(d> \ 0). Because we have 5,000 

samples from this distribution, which we denote by </>''', i = 1 • • -5000, we may estimate the 

risk with its posterior mean by computing JP(0+- > 0 | 0) = g^o £ ? = ° P(0y; > 0 \ d> = d>(i)). 

For the streptokinase data we have P(9fi | 0) = 0.073. This exceeds the values 0.058 which 

we found with the simple random effects model in Chapter 2, and using expression (2.13). 

We therefore conclude that on average streptokinase has benefit, but its heterogeneity may 

be large enough to cause worry that some populations may be harmed. 

The data analyses of Chapter 5 demonstrate uses of the augmentation procedure to 

estimate other useful parameters. 

4.5 Evaluations 

Here we use the streptokinase data to evaluate the performance of the normal model 

estimating procedures. Many of the streptokinase trials do not contain a sufficient number 

of events for the normal approximation to hold. This section intends to seek evidence for 

two points: First, to determine the operating characteristics when data have true normal 

error; Second, to determine the performance of the procedures when measurement errors 

cannot be assumed normally distributed. That is, to determine the performance of the 

procedures when the approximations fail. 

As we have done throughout this manuscript, we focus our attention on the ecological 

slope and evaluate the frequency properties of point estimates and confidence intervals for 
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Pg. This is true for the Bayes estimates, which for a fixed choice of prior distribution, we 

view as a frequency procedure. We conduct all simulations with Pg = 0. We do this not 

only because we have focused considerable energy throughout this manuscript on that case, 

but because the frequency characteristics when Pg = 0 has important policy and clinical 

implications. 

The procedures frequency properties depend on many things, including the true mea­

surement error, the size and number of the trials, k and m respectively, and also on the true 

value of the parameter, d>. Additionally, the performance of the Bayes procedures depend 

on the choice of priors, and so the Bayes procedures are actually a family of procedures. To 

limit the scope of the simulations we do the following. 

For parameter values other than Pg we choose to mimic the streptokinase, and we 

use their sample sizes as well. We use <ps = (Po = -0.239, Pg = 0,70 = —1.771, ry|x = 

0.110, TX = 0.462). We choose these values because they are the posterior mean estimates 

that result from the estimation procedures given in Chapter 5, which we believe to provide 

valid inferences with binomial error. 

We choose prior distributions p(</>) to be uniform on /3, 7, ryix, and r2 . The reasons for 

choosing these priors come from our experience analyzing several data sets, and also from 

the discussion given in Section 4.3 and in Mcintosh (1996). Those discussions show these 

priors for ryix and rx lead to smaller adjustments of observed line, and smaller uncertainties 

in Pg than other uniform priors. Thus if the Bayes methods perform well with these choices, 

coverage properties will not likely be worse with the other choices. 

Finally, because the models derived in this chapter assume normal measurement error, 

and the real data have measurement error that are functions of binomial, we perform each 

set of simulations twice, once with normal measurement error and the other with binomial 

measurement error. That data has k = 33 trials, and so we use d> = <j>s to generate 33 

pairs 0,- = (9yi,0xi). For the binomial simulations we then calculate 33 pairs pt = 0_1(0,), 
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and then simulate 33 pairs pi from binomial distributions with mean pi and sample sizes 

ni = (im, iid)'- For the normal simulations we use the same 0,- and then generate 33 pairs 

§i ~ Ar(0,-,E1), where £,- represents the large sample estimates of the measurement error 

variances given in Table 3.4 on page 48. 

For the data analysis portion of the simulation we proceed as described in this chapter 

and calculate method of moments, maximum likelihood and Bayes estimates, noting that 

if we find any pn = 0 or pd = 0 we add a half observation to the number of events, and 

a full observation to the number of subjects in that clinical trial. For comparison we also 

investigate the performance of least squares estimates. In particular we evaluate ordinary 

least squares regression (OLS) and random effects meta-analysis (RE). 

One technical point our simulations must consider is that both the maximum likelihood 

and method of moment procedures (from here on MLE and MOM), may give TX < 0, in 

which case Pg is not defined. When this happens we do not count it in our procedure 

evaluations, but we do make a note of the occurrence. 

Each table that follows summarizes a simulation study. For each procedure, we give the 

average of its point estimates of Pg, and the empirical coverage of its 90% and 95% confidence 

intervals. Beneath each estimate we give the sample standard error of the estimates, which 

we use to evaluate whether we can trust that the procedures estimate the true values. 

4.5.1 Complete Streptokinase data 

Table 4.1 presents the results of the streptokinase simulations, giving the three structural 

model estimates on the top and the least squares estimates on the bottom. First notice 

the least squares estimates. In each instance their point estimates fall substantially far 

from their null values (all estimates are several standard errors from Pg = 0), and the 

confidence intervals fall far short of their nominal values. In particular notice that the OLS 
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Table 4.1: Simulation results from all 33 streptokinase trials. Simulation results from the 
smallest nine streptokinase trials. Each estimate gives the empirical mean of its estimates for 
Po and the 90% and 95% confidence intervals. The values in parentheses give the standard 
error of the estimates. 

Method/Model 

Gaussian Variation 

E(pg) 90% 95% 

Binomial Variation 

E(Pg) 90% 95% 

Structural Methods 
MOM 

MLE 

BAYES 

0.012 
(0.005) 
-0.002 

(0.011) 
-0.010 

(0.009) 

0.87 
(0.021) 

0.890 
(0.024) 

0.921 
(0.019) 

0.932 
(0.013) 

0.951 
(0.016) 

0.955 
(0.015) 

0.043 
(0.018) 
-0.001 

(0.011) 
0.005 

(0.008) 

0.829 
(0.024) 

0.893 
(0.023) 

0.899 
(0.019) 

0.890 
(0.019) 

0.950 
(0.016) 

0.958 
(0.013) 

Least Squares 
OLS 

RE 

-0.414 
(0.027) 
-0.155 

(0.007) 

0.580 
(0.031) 

0.596 
(0.031) 

0.724 
(0.028) 

0.784 
(0.026) 

-0.480 
(0.021) 
-0.114 

(-0.006) 

0.536 
(0.031) 

0.716 
(0.0280 

0.612 
(0.031) 

0.852 
(0.022) 

estimates for Pg with both normal and binomial errors have mean greater than 0.4, and 

not significantly different from 0.453, the value we predicted in using the analytic methods 

in Section 3.3. Thus here we have evidence demonstrating the validity of Theorem 1. We 

find this result holds for all simulation we present here and in the next chapter. The RE 

procedure has smaller bias that the OLS procedure, and that too empirically verifies the 

claim made in Section 3.4, that RE method admits less bias than OLS estimates because 

the treatment weights are correlated with the population risk weights. 

We also draw attention to the fact that the bias we find when we simulate with normal 

errors are very similar to what we find when we simulate with binomial errors. We find this 

to be true for all simulations we do here and in the next chapter, and so we have reason to 

believe that the analytic bias results given in (3.15) and (3.15) are not too far off when we 

have binomial error. 

The top half Table 4.1 summarizes the estimates from the structural procedures. First 
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notice that the likelihood methods perform well with both normal and binomial measure­

ment error, each giving approximately unbiased estimates and truthful confidence intervals. 

The MOM estimates may slightly over adjust the observed regression line with normal error, 

and a bit more with binomial error, leading to a positive estimate for Pg, and confidence 

intervals falling just shy of their nominal values. Otherwise, the MOM method provides a 

substantial reduction in bias over from least squares methods. 

It may be surprising to find the likelihood procedures performing well with binomial 

measurement error. Examining the streptokinase data can understand why (the complete 

data can be found on page 48). Although many of the streptokinase trials have small size 

(ni) with few events, many have substantial size. In particular 55% of the trials have over 

50 subjects in both the treatment and control groups, and 45% of the trials have over 100 

subjects in each group. Nearly every one of these large trials contain five or more events, 

and so certainly the normal measurement error approximation holds for the large trials. 

The smaller trials will not have normal measurement error but the random effects model 

weights the smaller trials less than the larger trials, thus diminishing their influence. We 

hypothesize that the presence of the large trials gives these procedures their good operating 

characteristics. The next section investigates this hypothesis. 

4.5.2 Subsample of streptokinase trials 

We take the smallest nine observations from the streptokinase trials for a simulation 

study (see the trials marked with a in Table 3.4 on page 3.4). We do this not only to 

determine if the performance we find with the complete streptokinase data is attributable to 

the several large trials, but also because in practice meta-analyses are commonly conducted 

with few small trials. The magnesium data we introduced in Chapter 1 provides a good 

example of this. For any method to be practically useful it must perform well for data with 
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Table 4.2: Simulation results from the smallest nine streptokinase trials. Each estimate 
gives the empirical mean of its estimates for Pg and the 90% and 95% confidence intervals. 
The values in parentheses give the standard error of the estimates. 

Gaussian Variation Binomial Variation 
Method/Model E(pg) 90% 95% 

"MOM 0.040 0.82 0.910 
(0.037) (0.024) (0.018) 

6MLE -0.203 0.936 0.976 
(0.055) (0.014) (0.006) 

Bayes -0.0400 0.92 0.98 
(0.072) (0.017) (0.009) 

E(po) 90% 95% 

0.364 0.844 0.932 
(0.043) (0.023) (0.016) 
-0.407 0.979 1 

(0.043) (0.008) NA 
-0.631 0.987 1 

(0.067) (0.007) NA 

Least Squares 
OLS 

RE 

-0.639 
0.020 

-0.613 
0.022 

0.50 
0.031 
0.616 
0.031 

0.058 
0.030 
0.808 
0.025 

-0.612 
0.018 

-0.565 
0.019 

0.372 
0.030 
0.447 
0.025 

0.532 
0.031 
0.928 
0.016 

": 18% percent estimated rx < 0. 
b: 8% percent estimated TX = 0. 

these characteristics. 

Table 4.2 summarizes the simulations, and shows that the least squares methods perform 

worse that with the full data set. The results of Chapter 3 suggest that this should be 
ig 

the case, because removing the largest trials, which have smallest axi, increases B x , and 

so introduces more bias. For these data we have Bx = 0.718, Pw
,s = —0.942, and so 

Theorem 1 from Chapter 2 predicts that we should observe a regression line with slope 

equal to (0.718)(-0.942) = -0.677. The empirical value, -0.639, falls within two standard 

errors of this value. 

With normal measurement error, only the Bayes estimates perform well, appearing ap­

proximately unbiased with truthful confidence intervals. The maximum likelihood estimates 

over-adjust the regression line, and also estimates rx = 0 approximately 8% of the time, giv­

ing undefined estimates of Pg. This can be expected, because with small samples maximum 

likelihood procedures tend to underestimate variance components (for example see Morris, 
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1995; Everson, 1995). The method of moments estimates appear approximately unbiased 

with normal measurement error but its intervals undercover. 

Every structural model procedure fails when errors are binomially distributed. In fact, 

comparing these results with the linear model estimates we find that the Bayes procedures 

may actually increase the bias compared with the RE model. Clearly the normal model has 

limited use for data sets that have measurement error dominated by binomial distributions. 

4.6 Summary and Conclusions 

Chapter 3 uses a bivariate normal hierarchical model to quantify the biasing affects 

when population risks are used as covariates to explain clinical trial heterogeneity. This 

present chapter proposed three procedures to estimate the parameters of that model. The 

simulation evaluations in the previous section suggest that when measurement errors have 

true normal distribution, then the Bayes procedures perform well, giving approximately 

unbiased point estimates and valid coverage of its 90% and 95% confidence intervals. With 

a large number of trials, the maximum likelihood procedure perform similarly. The method 

of moments procedure eliminates a substantial amount of bias, but its coverage properties 

do not perform as well as the likelihood based procedures. 

Most commonly clinical researcher use mortality rates to measure treatment and con­

trol outcomes, and so they have binomial distribution. To use the model and estimating 

procedures given in Chapter 3 and Chapter 4, we must approximate the joint distribu­

tion of treatment effects and population risk with a normal distribution. This is only an 

approximation, and the simulation results show that when the approximation fails for a 

substantial proportion of the trials, the procedures of this chapter perform poorly and may 
—Is 

even increase the bias. The simulation results did show that that the quantity B x , which 

we use to quantify the bias, appears approximately valid even when errors are nonormal. 
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With small ry|x the likelihood procedures give large weight to the large trials. Because 

the large trials are more likely to have normally distributed measurement error then with 

small ry|x the normal procedures can tolerate some trials with nonormal error yet maintain 

good operating characteristics. However, similar data having larger ry|x cannot be ade­

quately analyzed with these procedures. In general we cannot consider these procedures as 

valid when some of the clinical trials in a meta-analysis have few events. 

We now recall the magnesium data introduced in Chapter 1 (see data on page 8). 

Concluding that Pg < 0 for those data leads to important policy decisions. But that data 

has only 9 clinical trials and 4 of the treatment groups have only 1 death. Clearly the 

normal model procedure cannot be treated as valid for data of this type. The next chapter 

derives estimating procedures that we may use for analyzing these data. 
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Figure 4.2: Histogram of marginal posterior distributions for streptokinase data, created 
from 5,000 draws from the data augmentation algorithm, with priors uniform on Pg, Po, 7o, 
ry|x and r2 . 



www.manaraa.com

Table 4.3: Results from streptokinase data analysis, with columns: Pg, the structural model parameter; Po, the mean 
treatment effect; ry|x, the heterogeneity remaining after controlling for population risk; 70, the mean population risk; TX, 
the heterogeneity of the population risk; p-val/prob, the 1-sided p-value testing H0 : Po = 0 versus Ha : Po < 0 (for 
MLE, MOM, or Random effects estimates), or the posterior probability P(Pe > 0 | 0) (for Bayes estimates). Each method 
provides point estimates and standard errors, and underneath them, 95% interval estimates. All intervals except the Bayes 
give 95% intervals based on a normal approximation. The Bayes procedure gives intervals computed from the upper and 
lower 2.5% quantiles of the posterior distribution. The posterior distribution is computed from 5,000 draws from the data 
augmentation algorithm using priors uniform on Pg, Po, 70, ry\x, and r j . 

Model/Method 

Bayes 
estimate(s.e.) 

interval 
MLE 

estimate(s.e-) 
interval 
M O M 

estimate(s.e-) 
interval 

Random Effects 
estimate(s.e.) 

interval 

Ecological Model 

Pe 

-0.040(0.147) 
(-0.346,0.252) 

0.034(0.103) 
(-0.167,0.236) 

0.028(0.320) 
(-0.599,0.655) 

-0.178(0.095) 
(-0.364,0.008) 

Po 

-.223(0.059) 
(-0.356,-0.113) 

-0.222(0.034) 
(-0.288,-0.155) 

-0.244(0.036) 
(-0.315,-0.173) 

-0.235(0.050) 
(-333,-.137) 

Ty\x 

0.144 

0 

0 

0 

Covariate Model 

7o 

-1.705(0.053) 
(-1.806,-1.600) 

-1.701(0.090) 
(-1.8774,-1.534) 

-1.726(0.098) 
(-1.918,-1.533) 

NA 

rx 

0.470 

0.412 

0.359 

NA 

p-val/prob 

0.384 

0.692 

0.534 

0.036 
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Chapter 5 

Small Sample Inference 

The simulation results of Chapter 4 show the large sample model performs poorly with small 

within study samples, due to the poorly approximated measurement error distribution. The 

model and estimation procedures we develop here intend to work well in that instance, but 

we also extend the ecological model. This chapter first lists requirements that a model and 

estimating procedure must meet for it to be applicable to a wide range of clinical research, 

then proposes a model that intends to meet those requirements. The model we derive nat­

urally extends the hierarchical model derived in Chapter 3, and the estimating procedures 

naturally extend the data augmentation procedure of Chapter 4. We then demonstrate 

the features of the model on the magnesium data, providing convincing evidence for the 

existence of a structural slope. Finally, we investigate the frequency properties of this small 

sample procedure and provide evidence that it has valid frequency properties in instances 

that the large sample model fails. 
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5.1 Requirements of a General Model 

For a model and inference procedure to be widely applicable, it should have the following 

features 

• Allow a variety of measurement error models: The streptokinase and magnesium data 

have binomial outcomes fii, but other measurement distributions are possible, includ­

ing Poisson (for failure rate data), normal (when treatment effects have continuous 

outcomes), and perhaps gamma (for combining estimates of variance). 

• Allow general definitions of treatment effect and population risk: Different medical 

specialties prefer different measures of treatment efficacy (for example see Sinclair 

and Bracken, 1994), including relative risks, risk difference, log-odds ratios and other 

functions of them. A health professional should be allowed to determine the scale of 

the treatment effect and population risk. 

• Allow complex ecological models: The structural model defined by Chapter 3 requires 

a treatment effect to be linear in the population risk. More complex associations 

should be allowed. 

• Valid frequency inferences for or large within study and between study samples: It 

is typical for meta-analyses to contain few trials (k) with small samples sizes (hi) 

in each trial. Inference procedures must have good frequency properties in these 

circumstances. 

The model we propose next accommodates each of these requirements. The next two 

sections construct a hierarchical model and derives a Bayesian inference procedure. Much 

of the work has analogies to the derivations given in Chapter 3 and Chapter 4. 
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5.2 The Model 

As with Chapter 4, we represent the observed and unobserved quantities in a hierarchal 

model, with first stage representing the measurement error model, and second stage repre­

senting the structural model. Here, instead of defining the measurement error distribution 

on 9{ = (9yi,9xi)', which we can only approximate, we treat the exact measurement error 

on the raw outcomes, fii = (fin, fid)'- We also change the structural model so that a richer 

variety of ecological models can be defined. 

The measurement error model 

The large sample hierarchical model of Chapter 3 can approximate the distribution of 

9i = 0(fii) by a delta method because fii has a known distribution, but otherwise does not 

use the parametric form of its distribution. Here we assume fii follow a Natural Exponen­

tial Family with Quadratic Variance Function (NEF-QVF) (see Morris, 1982, 1983a, for 

extensive results concerning the properties of these distributions). That is, we now assume 

(2.1) and (2.2) on page 12 equals 

P(fiti I fiti) = NEF-QVF 

p(fid | fid) = NEF-QVF 

where we assume V (fi) = V2fi2 + V2fi+vo- We denote the joint distribution of fin and fid by 

p(fii | fit), and because fin and fid are independent then p(fii \ fit) = p(fiu | fin)p(fiti \ fii)-

Many distributions commonly used in clinical research follow an NEF-QVF, perhaps 

the most useful being the normal (V(fi) = 1), binomial (V(fi) = fi(l — fi)), and the Poisson 

(V(fi) = fi), but the gamma (V(fi) = ft2), negative binomial (fi = fi2), and a sixth distribu­

tion Morris calls the NEF-GHS (GHS for generalized hyperbolic secant) are also NEF-QVF. 

Table 5.1 gives a selection of some NEF-QVF family members (see Morris, 1988, for a more 

complete list). 

The NEF-QVF distributions have convenient mathematical properties that allow us to 

Iki, 

P'd, 

V(fiti) 

nn . 
V(flci) 

i = l---k 

i=l---k 

(5.1) 

(5.2) 
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Table 5.1: Some NEF-QVF distributions, with their means fi, their variance V(fi)/n, natural 
parameter fl, cumulants generating function, \P(tf), and conjugate distribution. 

p(fi\fi) fi V(fi)/n ti $(i?) Conjugate=PD[/zo,r;K(^)] 

iBin(n,p) p toi l o g ( i ^ ) logtl + e'') BeU:pr>">-\i -py(i-w)-i 

iPoiss(A) A X/n log(A) e"5 Gamma: Ar"°e-r"° 

$N(fi,l) fi a2In fi ^ Normal : V F e - ^ - " " ' 2 

treat all the NEF-QVF family members without any more difficulty than if we treat only 

one of them. 

The ecological and structural model 

As with Chapter 4, we define the structural model as a product of the ecological model 

and the population risk model, but defined here as 

P(9yi | 0xi, 4>) = N (z'iPz + x'iPg, r2
Ax) (5.3) 

p(0xi\<l>) = N(Z'nz,Tl) (5.4) 

where <p = (^,/3j,,7',,ry |x,rx). 

We use Xi = x(6xi,Zi) to denote a known one-to-one function of 0xi and Zi. We allow 

Xi to be vector valued so the ecological slope Pg may be vector valued as well. We give 

examples of its use below, but first notice that we may make (5.3) equal to the structural 

model of Chapter 3 by choosing Xi(®xi, Zi) = 0xi. The population risk model (5.4) remains 

unchanged from Chapter 3. 

We define the structural model as the product of the ecological and population risk 

model by 

p(0yi, 9xi | <p)d0i = P(0yi | 0xi, <t>)p(9xi | <p)d9i (5.5) 
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We make the measure element d0i explicit to remind us that (5.5) defines a density on 0i. 

At times we find it useful to view (5.5) as a density on m, and the measure element will 

help us distinguish these two cases. 

The ecological model we defined has many features that accommodate the requirements 

listed in Section 5.1. We give a few examples to illustrate them. 

(1) Schmid et al. (1995), Lau et al. (1995), and Antman (1995b) wish to estimate the 

association log (f4J = Po + PoPci- To use this ecological specification the model 

of Chapter 3 requires us to treat pci as having a normal distribution. This creates 

difficulty because 0 < pci < 1, but the normal distribution does not enforce this, and 

it is possible for the data augmentation algorithm to simulate values of pd out of this 

range. A better specification treats 9xi = log ( j ^ - J as having a normal distribution. 

The present model can accomplish this without changing the structural model by 

choosing 9xi = log ( j ^ j - ) and Xi = T$k' 

(2) If we let Zij represent the j'th component of Zi, then we may include an interaction 

term in the ecological model by choosing Xi = (6xi,Zij9xi)'. In this instance Pg has 

dimension 2. 

(3) We may include a quadratic function by choosing Xi = (®xi,9xi). 

Section 5.4.1 uses specifications (1) and (3) when analyzing the magnesium data. 

Recall that Chapter 3 represented the structural model as a bivariate normal distribu­

tion. Here we may represent (5.5) by a bivariate normal distribution only when Xi = @xi-

Otherwise, the structural model has no simpler form other than (5.5). 

Joint distribution 

Chapter 4 found the joint distribution p(9i,9i | <p) useful when deriving estimation pro­

cedures. Here we proceed in a similar manner, except that we specify the joint distribution 

p(fii,fii | d>). 
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The structural model (5.5) defines a density on 0,-, but observations from the measure­

ment model provides a likelihood in terms of m. So that they conform we must either 

parameterize the measurement model in terms of 0{, or transform the structural model 

to be a density with respect to dm. We choose to do the latter for reasons that become 

apparent when we treat estimation. 

To transform (5.5) to a distribution on fii, we substitute 9(fii) for 9i and change the 

measure element from d9{ to ry =\ J(fii) \ dfii. Here J(fii) defines the Jacobian of 

the transformation of fit, and equals the Jacobian we use for the large sample variance 

approximation in Chapter 3 (see expression (3.3) on page 26). Thus we write the joint 

distribution of the observed fii and unobserved fii as 

P(fii,W I <t>) = P(fii I Hi)p(Sy(fii) I 0x(fii),<p)p(0x(Hi) | <t>) | J(fii) | (5.6) 

(a) (6) (c) 

Expression (5.6) shows that fii and /<; have joint distribution defined as a product of 

two NEF-QVF distributions (expression with label (a)), multiplied by the product of two 

regression models (expression with label (b)), and then multiplied by the measure element 

.(expression with label (c)). 

5.3 Inference 

Chapter 3 uses p(0i,0i\<j>) to derive the marginal distribution p(0i \ <j>) and the con­

ditional distribution p(9i\9i,d>). Here we express the analogous marginal distribution as 

p(fii I 4") — J p(fii,fii I <i>)dfii, which has no simple expression if we allow a general choice 

of NEF-QVF and 9(m), and the conditional distribution p(fii\fi{, </>) does not have the form 

of a known density. Because of this the method of moment and maximum likelihood proce­

dures given in Chapter 3, which require closed form expressions for marginal and conditional 

distributions, cannot be applied. We do find that we may extend the Bayes methods to the 

present circumstance. 
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As with the Bayes procedure of Section 4.2.2 we investigate the posterior distribution 

of <j>, which we denote by p(<j> | fi), indirectly through the joint posterior distribution 

p(d>, fi | fi), by treating ft as missing data. Recall from Chapter 3 that we use the notation 

Mt = (fin,fh2,• • • ,fitk), Mc = (lia,fic2,• • • ,fick), and fi = (fit,fic). 

The joint posterior distribution of <p and the unobserved means fi resulting from k 

observations from (5.6) and a prior p(a>) is 

p(fi,<p\fi) (5.7) 
k k k 

K v(4>) I I ?;('"'"' I llti)P(fid I /'«•) I I / W w ) I ex(fii), 4)p(9x(fii) | d>) J J J(fii) (5.8) 
1=1 1=1 1=1 

(a) (b) (c) 

a p(<t>)p(fi | fi)p(0y(fi) | 0x(fi),4>)p(0x(fi),<t>)J(fi) (5.9) 

(a) (c) (c) 

5.3.1 The data augmentation procedure 

The data augmentation procedure given by Chapter 4 makes inferences for <p by al­

ternating between an augmentation step and a parameter step. In that procedure the 

parameter step simulates values of <p from p(d>\0,0) as if 0 were known, then the augmen­

tation step simulates 0 from p(0\0, <f>) as if <j> were known. Both steps are simple because 

the hierarchical model summarized in Table 3.1 on page 3.1 gives a normally distributed 

augmentation step. We use data augmentation to estimate the present model, but here 

the augmentation step simulates ft. However, because of the difficult form (5.9) we find 

that the augmentation steps do not follow a known distribution, and so direct simulation is 

difficult. We first describe the data augmentation procedure as it would proceed if we could 

perform the augmentation steps directly, then describe a method to perform it indirectly. 

Letting fi = / t '" - 1 ' = (fit ,/4"~ )' represent the current values of the unobserved 

means ft, in brief notation we perform the data augmentation algorithm by alternating 
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through the following steps. 

0<B>~p(0|/i = /i(B~1),A) (5.10) 

/4n) ~ pfolMc = 4n~1], </> = <A(n)) (5-11) 

Min )~p(Mck = ^n ) ,</ ' = </'(n)) (5-12) 

Expression (5.10) represents the parameter step and (5.11) and (5.12) define the aug­

mentation steps. We divide the augmentation step into two steps so that they simulate 

from univariate distributions, making the algorithm we present in the next section simpler. 

In detail the parameter and augmentation steps are: 

Parameter Step: 

With current mean values /z(n-1), update the structural model parameters by 

*<»>~p(*| / i = M (n-1 ,,£) (5.13) 

= p(d>\0(fi) = 0(^n-V),ft) (5.14) 

«p(<t>)p(0\ri) 10 i n - i UM*i r 1 ) i <t>) (5.i5) 

Expression (5.14) follows because we restrict 0,- and fi{ to be one to one functions. 

Comparing the parameter step (5.15) to the parameter step (4.18) on page 57 we find them 

to be equal and so we perform the parameter step by the methods derived in Section 4.2.2. 

• 

Augmentation Step 

With current parameter estimate </>'"', simulate the missing means in two steps by 

(1) For i = 1 • • -k, impute the missing treatment fin by 

/4,n) ~ p(/* i & . /*<*= /4 r x U=<£ w ) (s-16) 

oc p(fiti I UtiWviHtiJr") I Sx(fin,^~l))^[n)) I J(Hti,fi{r1]) I (5-17) 
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(2) For i = 1 ••• k impute the missing control means fid by 

H{d] ~ P(A*d I fii,IHi = n\?\4> = <£(n)) (5-18) 

oc ?(£«• I fici)p(9y(fi^,fid) I *«(/#\Ha), <t>{n)) I J ^ . / ' c . ) | (5.19) 

• 

If we could simulate from densities proportional to (5.17) and (5.19) then alternating 

between the parameter and augmentation steps generates a sequence d* , 4" •"' 4> that 

converges to the posterior distribution p(<j> \ fi). Because those densities do not represent 

any named distribution, direct simulation is not possible without special effort. 

One computationally intensive solution approximates the augmentation distributions 

by a discrete distribution, or grid, and treats simulations from that approximation as if 

they were exact. This procedure has the colorful name "the Griddy Gibbs" algorithm 

(Ritter and Tanner, 1992). We will find that we need several thousand iterations for our 

data augmentation procedure to converge, and because we must perform the augmentation 

steps 2k times at each iteration, any method that is too computationally intensive can be 

impractical. Because we do not use the data augmentation algorithm to make inferences 

for fi, but rather as a device to make inferences for <j>, we may wish to sacrifice accuracy of 

augmentation step for computational efficiency. 

5.3.2 Metropolised data augmentation procedure 

Although we find the augmentation steps difficult to perform exactly, we find that we 

can form good approximations. The Metropolis-Hastings algorithm (Hastings, 1970) is 

an MCMC algorithm and general form of the Gibbs sampler that allows the steps to be 

performed approximately (for a tuorial on these methods see Gelman et al., 1995,, Chapter 

11, page 320). Here we will use their algorithm in the augmentation step. We outline the 

algorithm here, and discuss making the approximation in the section that follows. 



www.manaraa.com

5.3 Inference 85 

Before we describe the Metropolis algorithm, we give a few preliminaries. If we let p(-) 

represent a true distribution, then we use p(-) to denote a distribution that approximates 

it. We also define the importance weights by 

/ p ^ l l / t 2 ' ^ « / * i | « , * ) ( 5 - 2 0 ) 

Intuitively, the importance weights give the relative density of fi\ under the true density 

p(-) compared to the approximate density p(-) when both are conditioned on fi2 and 4>. For 

example, if Ip,p(fi\ = 4.2 | fi2,4>) = 3, then fi\ is 3 times more likely to take on the value 

4.2 with the true density than with the approximate density. 

In words, the Metropolised augmentation step uses the importance weights as follows. 

We treat updating fin for now. At each step we approximate the augmentation distribution 

by a known distribution and simulate a candidate fin. We then compare the importance 

weight of the candidate with the importance weight of-the current observation fin '. If 

their ratio exceeds 1, then we set /t["' = fin- Otherwise, we either choose //}" = fin or 

fi\i = fin , with probability that depends on the ratio of the importance weights. In 

notation the steps are 

Metropolised Augmentation Step: 

(1) Impute fi\i for i = 1 • • -k by 

First draw a candidate value for fin by 

hi ~P ( / I« | fid = fi[rl\4> = 4>{n)) (5.2i) 

then update /zj"' by 

(" 
. , _ ( * , wH t P ,ob ,M, i t y m ,„ (^i ; ir ; ; ^. v ^ ^ 

^(n-i) otherwise 
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(2) Impute fi[f for i = 1 • • -k. 

fid ~ P(Hci I fiti = fi\-+l), 4> = 4>{n)) (5-23) 

, % I fa with probability min ( ' ^ ^ ' f ' ^ l ,1) 

^) = f Vw^r'VW"') y (5.24) 
/z'"~ ' otherwise 

Notice that if p(-) = p(-), so that the approximating density equals the exact density, 

then IPlp(-) = 1, and the Metropolis algorithm always accepts the candidate. In this instance 

the Metropolised algorithm equals the exact augmentation algorithm, and so we see that 

the Metropolis algorithm generalizes the Gibbs sampler. 

The Metropolis algorithm has an advantage if accurate approximating densities can be 

formed quickly. With poor approximations the ratio of importance weights will often be 

small, and the Metropolis algorithm converges slowly. Efficient implementation requires 

accurate approximations so that the importance ratios are as close to 1 as possible. 

5.3.3 Density Approximations Based on Pearson Densities 

So far we have described how we perform an MCMC estimation procedure if we have 

approximations to (5.17) and (5.19). Here we draw attention to creating approximations 

based on fitting the modes of (5.17) and (5.19) to known distributions. Because we have 

univariate augmentation steps either Newton's method or computational searching can find 

modes quickly and simply. We first discuss a few preliminaries. 

We need to approximate densities that have form similar to the right hand side of (5.17) 

and (5.19). For clarity, in the discussions that follow we drop the indices and use pn(fi)dfi 

to denote the right hand sides of (5.17) or (5.19) at the i\ih step of the data augmentation 

procedure. We also represent the log density by ln(p) = log(pn(fi)). 

The most common way to approximate densities matches the first and second derivatives 



www.manaraa.com

5.3 Inference 87 

of £n(fi) to a normal distribution. If Cn(fio) = 0, so that £n(fi) has mode ^oi and letting 

a2 = —l/£"(fio), then pn(fit) = N(fio,a2) approximates pn(fi). For our application this 

approximation performs poorly. Recall that we define pn(fi) as the product of an NEF-

QVF likelihood (expression with label (a) in (5.6)), multiplied by a transformation of two 

normal densities (expression with labels (b) and (c) in (5.6)). These distributions may have 

skew, a feature the normal distribution cannot accommodate. 

Morris (1988) describes a procedure that generalizes the normal approximation by us­

ing general Pearson families to approximate univariate distributions. The Pearson family 

contains a large number of named distributions, including the beta, gamma, normal, F, and 

others, and many have skew. Before we describe the approximating procedure, we first give 

some preliminary facts about NEF-QVF distributions and Pearson families. For the results 

we outline next see Morris (1982, 1983a, 1988) for detailed references. 

NEF-QVF Distributions 

If a random quantity fi has NEF-QVF[/x, V(fi)/n] distribution, its density may be written 

as 

p(fi | fi) = exp (nfid - ntf (tf)) hn(fi) (5.25) 

where the term hn(fi) does not depend on fi. When fi are discrete, then (5.25) defines a 

probability mass function, otherwise it defines a probability density function. The parameter 

fl, a one to one function of fi, is called the natural parameter. The function ^(•d) generates 

cumulants and has first derivative \?'(i?) = ft, the mean of fi, and second derivative \P"(i?) = 

V(fi), so that Var(/i) = \P"(T?)/71. With large n, (5.25) has an approximate normal shape. 

For example, if np has binomial(n,p) distribution then p is a NEF-QVF[p,p(l - p)fn], 

with tf = log ( ^ and <P(0) = log(l + e1'). Notice that f'(tf) = e*/(l + e*) = p. Table 5.1 

gives the definitions of $(•) and •d for some NEF-QVF distributions. 

Pearson Distributions 
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A distribution that mimics (5.25) except that we treat it as a density on the parameter 

#* has the form 

p(i>* I r, no) = AVlW) exp(r/i0tf* - rW.(tf»)) (5.26) 

The constant A"r,M normalizes the density to have unit integral. Random quantities 

with densities having the form (5.26) are related to random variables following Pearson 

distributions if *"($») evaluated at the mode of (5.26) has a quadratic form in fio: V*(fi0) = 

V2fio+,vifio+vo > 0. Although #* does not follow a Pearson distribution, the transformation 

fi* = /f»($«) = $'($*) does, and has mean ^o and variance V*(fio)/(r — V2). We also use 

•0„ = •dt(fi) = $,-1(/z) to denote the inverse of that transformation. The Pearson densities 

are characterized by the variance function V* and we represent a quantity having a Pearson 

distribution with parameters r and fio by ft* ~ PD(r,/«o; V*). 

The log of (5.26) has first and second derivatives expressed as 

(.'($*) = rfio - r<P'„(0.) 

= r(fi0 - p.) (5.27) 

and 

*"(0.) = - r¥" (0 . ) 

= -rVi(/i.) (5.28) 

For convenience we express the derivatives above once in terms of #«, and then again 

in terms of ft*. The first derivative shows that a Pearson density has mode at fi* = fio or 

equivalently, a mode at 1?» = tf«(^o). The curvature at the mode (the second derivative) 

gets more negative as r increases, and importantly, as r gets large, then y/r(fit — fio) and 

y/r("dm — $0) converge in distribution to the normal distribution. The Pearson family is the 

conjugate to the NEF-QVF if $»(•) in (5.26) equals *(•) in (5.25). 
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For example, if fi* has a beta distribution, the conjugate to the binomial, having mean 

po and variance p°;_7i i t n e n ^* = ^'(p) = l°g(^ihj) h a s distribution written as ti ~ 

kr<Va exp(77Jo#* — 7"log(l + e"'*)). Table 5.1 gives the conjugate Pearson densities for some 

NEF-QVF members. 

Computing an approximating density 

Morris advocates using Pearson densities to approximate the mean of posterior distri­

butions, fi, but here we will adapt his method and approximate the density of the natural 

parameter d. The primary reason for doing this is that, because fi may have restricted 

range, a normal approximation for ft (like those described at the beginning of this section) 

does not give a good fit. For example, if nfi has a binomial distribution then 0 < fi < 1. 

Natural parameters, however, do not have restricted range, and so normal approximations 

to •d work better than normal approximations to fi. For example, for binomial we have 

-oo < tf = log(/i/(l - fi)) < oo. In practice it is most common to approximate •& by a 

normal distribution, and so comparing the Pearson and normal approximation methods is 

fairest if we compare how they perform on fl. This does not cause difficulty for our augmen­

tation steps because simulating a candidate #, denoted d, can be used to form the candidate 

fi by fi = »(d). 

Thus we will transform the augmentation distributions (5.17) and (5.19) to define densi­

ties TD, the natural parameter of the NEF-QVF measurement error distribution. We denote 

that density by pn(#)<W, and we derive it by transformingpn(fi)dfi to a density on tf = <•?(/*)> 

leading to 

pn(ti)d{) = pn(n)d(fi(ti)) (5.29) 

= p » ( * W ( * ) ) (5-30) 

= pn(fi)V(fi)dti (5.31) 

Recall that fi is an implicit function of fl, and so the above equation means that the prob-
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ability density for ft equals the density pn(fi) evaluated at fi^), then multiplied by the 

measure element V(fi(fl)). We use £„(tf) to denote log(p„(i?)) 

We are now ready to approximate the candidate draw of the augmentation step. Morris 

recommends choosing an approximating Pearson density with the restriction that the range 

of •d* be the same as the range of fl, then select r and fio to equate the first and second 

derivatives of £„(•&) to (5.27) and 5.28). If £'(tf0) = 0 so that £„(tf) has mode i?0 then 

equating the first and second derivatives (5.27) and (5.28) selects r and fio as 

fi0 = fi*(#o) and r = -l/£"(ti0)V*(fi*(ti0)) (5.32) 

Note that if we choose to approximate pn($) with a normal distribution then V*(fi) = 1 

and (5.32) reduces to the usual normal approximation for d. In this sense Morris generalizes 

the usual approximation method. 

Performing the candidate draw 

To simulate the candidate •O we recognize that fi* = \P'(i?) has distribution PD(r,fio\ V*). 

Thus we simulate a candidate by fi* ~ PD(r,fio\ V*) and then compute d = fl*(fi*). Recall 

however that our initial aim was to simulate the candidate fi, the mean parameter. We 

complete the augmentation step by computing fi = fi(i)). 

To summarize, at each augmentation step we choose an approximating Pearson distri­

bution characterized by V*(-), then choose parameters r and fio by (5.32). Now simulate 

fi* ~ PD(r,fio\ V„) and complete the candidate draw by 

fi = fi(Mfi*)) (5.33) 

Expression (5.33) simplifies for particular choices of V*(-). For example, if we choose the 

Pearson density to be the conjugate for the NEF-QVF then V» = V and the candidate draw 

(5.33) becomes fi = fi*. If however we use the usual normal approximation then V* = 1 and 

(5.33) becomes fi = fi(fi*)-
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Although this may seem complicated it is very efficient to implement by computer and 

as we find next, gives very efficient approximations. Before we give examples and discuss 

choosing V* we must first point out the correct approximate distribution with which to 

compute the importance ratio (5.20). The importance ratio is expressed with densities on 

fi, but (5.26) is expressed in terms of '9. To express this in terms of fi, we must multiply it 

by the change of measure d'd/dfi = l/\&"(i?). Thus in the denominator of (5.20) we use 

P(fiti I fid = fi(rl\4> = 4>{n)) = exp(rft0d - r<2*(d))/V"(d) (5.34) 

5.3.4 Examples 

There may be many possible Pearson families to choose from when forming the ap­

proximating density. To help make that decision Morris gives two diagnostics that require 

evaluating £"'($) at the mode, and so requires additional computation. We find that al­

though his diagnostics do lead to the best choice of V*, we find empirically that the choice 

V* = V often works best, and when it is not best, it still performs well and so in the interest 

of computational efficiency, we do not compute the diagnostics. 

(1) We demonstrate the approximation method analytically with an example that yields 

simple expressions for 7' and ^o- Although simple, the model we define may be used 

to correctly implement the meta-analysis methods proposed by Moses et al. (1993) and 

Van Houwelingen et al. (1993). 

Suppose we wish to evaluate the association between 0y = logfy^-J and 0X = 

l°g (T^t") w ' t n t n e l ' n e a r m°del E(9y | 9X) = Po + Pg9x. Because binomial observations 

have natural parameter l? = log f y£- J, we can express this model more generally by 

9y = tit and 0X = tfc. We define r/ = Po+Pg9x, and so the augmentation distribution (5.17) 
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requires that we approximate a density for $< which has log looking like 

«n(0«) = ntfit - t*«(0j) - A-(#t - V? (5.35) 
% w ' y|z . 

and has first and second derivatives given by 

Wt) = ntfittit - ntV(tit) - 4-Wt ~ V) (5-36) 

CVt) = -ntV"(tit) - - J - (5.37) 

= -ntV(fi)-~ (5.38) 
Ty\x 

We first make a few observations regarding the shape of (5.35) with different amounts 

of information. The sample size nt indicates a level of information about i? contained in (a), 

and the magnitude of l/ry |x indicates the information for •d contained in (b). With small 

l/r2,x (b) contains little information and term (a) influences the shape of the distribution. 

Because term (a) represents an NEF-QVF likelihood choosing V* = V leads to the best 

approximation. With large n (a) has nearly normal shape, or with large 1/r2. then (a) and 

(b) together have normal shape regardless of n, and the best approximating distribution 

has V* = 1, the normal distribution. An MCMC algorithm will take on many values of ry|x 

so it is likely that for some iterations V* = V works best and for other choosing V. = 1 

works best. 

If £'(§°) = 0, £n(dt) has mode tf° then (5.32) leads us to choose 

Ho = n*(i>0
t) and r = nt%ff\ + 7 ^ 4 - (5.39) 

K(fio) K(fio) T-y|x 

Now notice that when 1/r2,. and/or n( have large value, then r is large also (this follows 

from (5.39) in particular and (5.32) in general). Because the Pearson family converges to 

the normal distribution with large r, then even when V* = 1 is best, the choice of V* = V 

will not perform poorly. The next example demonstrates this graphically. 
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(2) Throughout the previous chapters we have chosen 9y = log (jjt J and 9X = log ( - ^ - j . 

This choice does not lead to convenient expressions for r and fio, but we may evaluate the 

approximations graphically. Recall that this choice of 9y{ and 9xi has Jacobian 

Pc 

Pc(l-Pc) 

and so | J(p) |= ;'_ .. This leads to augmentation steps for pn with the following form 

pn(fi($))V(fi(9))dtit = ntfit log (r^j) - nt log(l - p,) (5.40) 

-4MS)-^-^r^))2 <"» 
- log ( I ) (5.42) 

-\og(V (pt)) (5.43) 

Term (5.42) represents log (:f log f? 1 ) ) , the component of log(| J(pt,pc) |) that involves 

Pt, and (5.43) represents log of the change in measure g|. Although it has difficult form, 

especially if expressed in terms of i?t = log (j-^-J, its major mode and second derivative 

can be computed quickly on a computer. 

At any particular iteration of the MCMC algorithm the shape of the true augmentation 

density depends on d>^ = (Po ,Pg ,ry?x,rx)' and pc
n ~ , and also on the observed 

mortality rate pt and treatment group sample size nt. Figure 5.1 shows examples of the 

true and approximate distributions when parameters are chosen to be typical values for 

the magnesium data, as given to us by the data analysis of Section 5.4.1 (see Table 5.3 on 

page 98 for the actual values). We use the posterior means of p0 and Pg and select nt = 25 

to correspond to the smallest magnesium trial. To show the shape of the augmentation 

density with different sources of information we have pt take values 0/25 and 1/25, and we 

assign ry|x to be the median and 3rd quartile of its posterior distribution. 
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(a) Pt = 0/25, 3rd quartile ry\x (b) pt = 1/25, 3rd quartile TV\X 

(c) pt = 0/25, median ry\x (d) fit = 1/25, median rv\x 

Figure 5.1: Plot of Normalized Density and Approximations: The curves are exact 
posterior(—), Pearson approximation with V* = 1 (normal) ( ), Pearson approximation 
with V* = V (logit of a beta) ( ). 
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Figure 5.1(a) and Figure 5.1(b) show the true distribution (heavy solid line) when the 

binomial likelihood heavily influences its shape (with large ry|x and small nt). Figure 5.1(c) 

and Figure 5.1(d) show the true distribution with small ry|x so the structural model greatly 

influences its shape. The heavily dotted line gives the density approximation when V* = V 

(the conjugate choice), and the lightly dotted line represents V* = 1 (the normal approxi­

mation). 

The two top figures show that with little information for tit the augmentation distri­

bution has heavy skew, and the Pearson distribution with V* = V follows it nicely. In 

Figure 5.1(a) the Pearson approximation seems to over estimate the left tail a bit, but this 

does not cause alarm. With the Metropolis algorithm, it is better to over estimate a tail 

than underestimate it, because if underestimated too greatly the Metropolis algorithm will 

have difficulty obtaining samples in that region, and convergence slows. 

Figure 5.1(c) and Figure 5.1(d) use smaller heterogeneity components than do the figures 

on the top, and look considerably more normal. The Pearson conjugate approximation 

appears to fit better than the normal approximation in the left tail, but worse in the right 

tail. But in every case, the Pearson approximation fits well. The next section provides 

further evidence that the Pearson approximations perform well. 

5.4 Data analysis 

We now apply the small sample procedure to the magnesium and streptokinase data. To 

demonstrate the capabilities of the extended structural model we use several ecological mod­

els. Because of the important policy implications of the magnesium data, we concentrate 

on those data analyses. 

For each of the analyses that follow we run J = 5 independent MCMC sequences 

and monitor Pg to assess convergence (see Section 4.2.3 for description of the convergence 
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Table 5.2: Data from nine clinical trials evaluating intravenous magnesium for treatment 
of AMI (sorted by magnitude of treatment effect). The columns are: trial name; treatment 
and control group mortality rates, pt and pc; treatment and control group sizes, nt and nc; 
treatment effect estimate in log relative risk and its standard error, log(jjp) and a; log odds 

of mortality in the control group, log(y£|-). The final row gives the unweighted means of 
the columns. , 

Trial 

Feldsted 
ISIS 4 

Abraham 
LIMIT 2 

Morton 
Rasmussen 

Ceremuzynski 
Schecter '95 

Schechter 
Means 

Pt 
0.067 
0.076 
0.021 
0.078 
0.025 
0.067 
0.040 
0.042 
0.017 
0.048 

Pc 

0.054 
0.072 
0.022 
0.103 
0.056 
0.170 
0.130 
0.173 
0.161 
0.104 

nt 

150 
29011 

48 
1150 

40 
135 
25 
96 
59 

3235 

nc 

148 
29039 

46 
1150 

36 
135 
23 
98 
56 

3233 

i°s(£) 
0.210 
0.051 

-0.043 
-0.271 
-0.799 
-0.938 
-1.182 
-1.384 
-2.249 
-0.734 

a 

0.460 
0.031 
1.399 
0.134 
1.203 
0.374 
1.118 
0.536 
1.037 
0.699 

l o g ( T ^ ) 
-2.862 
-2.556 
-3.807 
-2.169 
-2.833 
-1.583 
-1.897 
-1.561 
-1.653 
-2.324 

method). The Metropolised data augmentation algorithm typically requires over 4,000 

iterations to reach convergence, which is over twice the number of iterations the large 

sample procedure to requires. As Section 4.3 recommends we choose prior distributions 

uniform on /3, 7, ry|x and r^. 

5.4.1 Data Analyses of the Magnesium Trials 

Chapter 1 introduced the magnesium data, but for convenience we reproduce it here. 

We analyze the magnesium data with three different ecological models. We first use an 

ecological model that has been treated throughout this manuscript, a specification we call 

the "standard" model. We also estimate the association favored by Lau et al. (1995) and 

Antman (1995b) that relates the log relative risk linearly to the control group mortality rate. 

Because this is the specification preferred in many ongoing projects at the New England 

Medical Center, we call this the "NEMC" model. Finally, we use the standard model but 
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add a squared term to the ecological component. Although these models are quite different, 

we find next that they give strikingly similar conclusions. 

Standard model 

We use treatment effect and population risk definitions 9yi = log(^j-) and 0X{ = 

log (jfp-J to analyze the magnesium data. The top half of Table 5.3 summarizes the 

posterior distribution of the structural model parameters. The bottom half of the table 

summarizes the posterior distributions of some derived quantities we introduce below. Fig­

ure 5.2 shows the marginal posterior distribution of selected structural parameters. 

The small sample procedure gives the ecological slope posterior mean as pg = —1.024, 

with only 2.3% of the samples falling above zero, and a 95% interval estimate for Pg from 

-2.323 to -0.020. Figure 5.2(a) shows the posterior distribution of pg has slightly right skew. 

We conclude from these results that the magnesium data has a non zero ecological slope. 

We may also wish to estimate the overall mean treatment effect of magnesium when 

we do not control for the population risk1. We compute the posterior distribution of the 

mean treatment effect, which we we denote by fiy, from the MCMC sequence as follows. 

If we let Po and Pg represent the ecological coefficients at iteration i and 7Q represent 

the mean population risk at iteration i then fiy = fifi' + Pg % represents the mean 

treatment effect estimate at that iteration. The histogram of fiy
1' estimates the marginal 

posterior distribution of fiy, and Figure 5.2(b) plots it. Table 5.3 summarizes the posterior 

distribution and gives a posterior mean fiy = -.582 and a 95% interval from -1.579 to 0.210, 

with 7% of the mass falling above fiy = 0. These estimates differ from when we apply the 

large sample procedure (not shown) which gives fiy = —0.470 but with a 95% interval that 

excludes fiy = 0. We conclude that on average trials of magnesium show benefit but there 

'We remind the reader that the intercept /?o represents the expected value of By, at 0X, = 0. This differs 

from the specification given in Chapter 4 where, because of the deviations in mean parameterization of the 

ecological model, the intercept term represented fiy. 
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Table 5.3: Results from magnesium data analyses, with columns: Mean, posterior mean 
estimate; Std.Dev., posterior standard deviation; P-val, the fraction of samples greater 
than zero, representing a Bayesian 1-sided p-value; Quantiles, the quantiles of the posterior 
distribution. 

Posterior Estimates Quantiles 
Mean Std.Dev. P-val 

Po -1.024 0.496 0.023 
Po -2.795 1.137 0.012 

r„|x 0.348 0.295 1 
7o -2.245 0.294 0 
rx 0.717 0.356 1 
fly -0.516 0.392 0.07 

C -2.788 0.540 0.001 

0.025 ' 0.05 0.50 0.95 0.975 
-2.323 -1.977 -1.023 -0.271 -0.02 
-5.958 -5.179 -2.759 -1.123 -0.625 
0.005 0.012 0.275 0.909 1.394 

-3.028 -2.868 -2.238 -1.788 -1.664 
0.240 0.283 0.645 1.356 1.098 

-1.618 -1.327 -0.49 0.071 0.214 
-5.035 -4.25 -2.65 -2.423 -2.347 

is substantial risk that some will cause harm. 

We may evaluate how likely it is for a future trial of magnesium to be harmful as 

follows. Suppose a future trial has population risk c standard deviations from the mean: 

0+. = 7o+crx. With 4> known, a future trial 9yi has normal distribution with mean /3o+A)0X; 

and variance r2, , and so P(9yi > 0\4>) c an be evaluated from a normal table. Averaging 

these values over the samples t̂ '1^ gives a posterior mean estimate of risk. Choosing c = 0, 

so we estimate the risk of a trial with average population risk, we get P(9yi > O\0) = 0.14, a 

significant risk of harm. If we choose c = 1, so the population risk is one standard deviation 

from its mean, then we get P(9yi > O\0) = 0.001. Thus treating sicker populations gives 

substantially smaller risk. 

By setting to zero the expected treatment effect, 0 = 9y = Po + Pg9x, and solving for 

9X we estimate the population risk that can expect to have 9yi = 0. We represent that 

point by ( = —Po/pg, and approximate its posterior distribution from the histogram of 

£(') = —PolPg- We will find that when Pg is near zero then £(*' is extremely large or 

small, depending on the sign of/?0 . Thus Figure 5.2(c) plots the posterior distribution 

of £ trimming 0.1% of its tails, and Table 5.3 summarizes the trimmed distribution. The 
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parameter £ has posterior mean ( — -2.738, with a 95% quantile at -2.423. This means that 

with probability 0.95 trials with 9xi < -2.423 can expect to find 9yi > 0. The ISIS 4 trial 

has population risk 9xi = —2.602, lying just near the mode of the posterior distribution for 

4" (its mode is -2.650). This is not likely a coincidence. Because ISIS 4 falls almost exactly 

on the line <9y; = 0, and because of its large size, it contributes a considerable amount of 

leverage on the posterior distribution of (. 

Here we briefly evaluate the performance of our data augmentation density approx­

imations by examining the acceptance probabilities. Table 5.4 summarizes the jumping 

probabilities we found for each augmented parameter, giving their 1%, 10% and median 

values. We find that the worst performing augmentation step comes from imputing the 

Abraham control group mortality rate, and that has a median acceptance rate of 96.9%. 

We consider this substantially close to the optimal value of 1. Notice the acceptance rate 

for ISIS 4. Because of its large size its imputation step certainly is almost exactly normal, 

and here we see the Pearson approximation, which fits a beta distribution to the augmen­

tation step, finds a median acceptance rate of 0.987 when augmenting pci and .992 when 

augmenting pn. We conclude that our Pearson approximations perform extremely well. 

NEMC Model 

We now define 9yi = Po + P\Pd, where pc, represents the control group mortality rate. 

So that we may continue to treat 9yi = log f j£̂ — J as having normal distribution we choose 

Xi(0xi,Zi) = ° "xi • Table 5.5 summarizes the posterior distributions. Notice that the 

population risk parameters 70 and rx in Table 5.5 have posterior distribution nearly iden­

tical to those found when using the standard model. This is because the population risk 

model remains unchanged so the posterior distributions must also remain unchanged. Any 

difference between the two estimates must be due to the variability of the MCMC algorithm. 

We find the ecological slope highly significant, with posterior mean Pg = —12.472, and 

only 1% of its mass falling above zero. The population mortality rate that gives zero 
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Table 5.4: Assessment of augmentation step approximations. Left columns gives the aug­
mentation performance for the control group and the left gives it for the right. Column give 
quantiles of the jumping probabilities. 

Control Treatment 
Trial 1% 10% 50%^ 

Feldsted 0.214 0.730 0.969 
ISIS 4 0.785 0.909 0.987 
Abraham 0.012 0.678 0.969 
LIMIT 2 0.331 0.746 0.973 
Morton 0.437 0.722 0.977 
Rasmussen 0.538 0.775 0.970 
Ceremuzynski 0.625 0.837 0.978 
Schecter'95 0.942 0.976 0.997 
Schechter 0.030 0.631 0.967 

1% 10% 50% 

0.665 0.925 0.994 
0.811 0.931 0.992 
0.685 0.913 0.996 
0.705 0.914 0.995 
0.666 0.932 0.996 
0.653 0.893 0.993 
0.605 0.874 0.993 
0.951 0.976 0.997 
0.730 0.944 0.996 

treatment effect, £, has posterior expectation f = 0.063. 

Comparing different models 

Although the NEMC and standard specifications suggests an ecological association ex­

ists, their specifications are linear on different scales. We view our procedure as being 

primarily data analytic, and so we do not think that of there being a "true" model, but we . 

do have concern if two different specifications lead to different conclusions (we will comment 

on this point again in the conclusion to this manuscript). Here we compare the conclusions 

of NEMC and standard models. 

Figure 5.3 plots the NEMC structural model on the scale of the standard model. That 

is, the NEMC curve represents 0y = Po + Pi (jfjfe")- We find the standard and NEMC 

models agree in the region containing most of the observations. We will comment on this 

further when we estimate the quadratic model. We may also compare ( by transforming 

the NEMC estimate to the scale of the standard model. We get logit (0.063) = -2.700, 

which is close to the standard models estimate of —2.788. Furthermore, Mcintosh (1996) 

used the large sample model with 0yt = logit (#yl) — logit (9xi) and 9X{ = pci to estimate 
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Table 5.5: Magnesium data posterior summary with NEMC model. 

Posterior Estimates Quantiles 
Mean Std.Dev. P-val 

Pg -12.472 4.137 0.01 
Po 0.816 0.468 0.945 

ry|x 0.267 0.256 1 
7o -2.243 0.299 0 
rx 0.701 0.339 1 
C 0.063 0.025 0.965 

0.025 0.05 0.50 0.95 0.097 
-23.411 -20.085 -12.199 -6.556 -3.976 
-0.5927 -0.292 0.843 1.496 1.662 

0.008 0.012 0.202 0.734 0.899 
-3.128 -2.974 -2.244 -1.788 -1.678 
0.297 0.301 0.701 1.401 1.22 

-0.036 -0.005 0.071 0.084 0.089 

the ecological association for magnesium and found ( = 0.062, which is strikingly close to 

the value estimated by the NEMC model. Thus we find that changing the definitions of 

both 0yi and 9xi do not change our conclusions about which populations can benefit from 

magnesium therapy. 

5.4.2 Quadratic Model 

We investigate more complex ecological associations by introducing a quadratic term 

into the standard model and estimate 9y, = Po + Pg,i9xi + Po,20xi- We accomplish this by 

choosing Xi(&xi,Zi) = (9xi,9xi)'. Table 5.6 with the standard model. 

The 95% posterior interval for the quadratic term is between -11.86 and 3.99, with over 

10% of its mass falling above zero. We have little evidence suggesting a quadratic ecological 

model, and so in the interest of parsimony, we prefer the standard model. 

For completeness Figure 5.3 includes the quadratic ecological model constructed from 

the posterior means given by Table 5.6. Notice that quadratic model agrees with the other 

models in the region where the majority of the data are found, with the Abraham study 

being one possible exception. 

If the quadratic model were to hold, would we expect a future trial similar to Abraham 
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Table 5.6: Quadratic model results: Parameter 0$$ is the coefficient of 9^, Poti is the 
coefficient of 9xi and Pg o is the intercept when estimating the regression 9yi = Po + Pe i9xi + 
Mi-

Posterior Estimates Quantiles 
Mean Std.Dev. P-val 

Po,2 -1.713 4.092 0.113 
Po,\ -9.008 19.375 0.094 

Po -11.886 22.752 0.067 
TV\X 0.285 0.342 1 

7o -2.283 0.291 0 
TX 0.716 0.357 1 

0.025 0.05 0.50 0.95 0.975 

-11.868 -8.392 -1.415 1.054 3.991 
-56.679 -41.08 -7.388 3.616 16.123 
-68.699 -49.932 -9.828 2.03 16.088 

0.003 0.006 0.172 0.963 1.254 
-3.064 -2.893 -2.275 -1.831 -1.722 
0.207 0.248 0.644 1.368 1.657 

to find 9,j > 0? We must be cautious when making such interpretations. The curves in 

Figure 5.3 represent the associations relating 9y, and 9xi, but the data points represent 9yi 

and 9xi. To answer this question we must first estimate Abraham's true |9X;. Although this 

manuscript did not treat estimating 6X{, we briefly give two ways to estimate 9X{. 

One way uses the augmentation steps of the data augmentation algorithm to estimate 

the posterior distribution of Abraham's (9X;. The mean values of 9xi may be used as an 

estimate of 0X,-. For Abraham we find that 9xi have average value —2.922, which places 

Abraham in the region of the structural models where they agree. Another method to 

estimate the individual t9x; uses Bayes or empirical Bayes methods and estimates them 

without regard to 9y{. As Chapter 3 and Chapter 4 pointed out, the population risks 

marginally follow a univariate hierarchical model and so the population risk model may 

be analyzed separately from the ecological model. For example, if trials are large enough 

so that we may assume normally distributed within trial measurements, then we may use 

Morris (1983b) to estimate 9X{. If the data have a Poisson distribution, or have binomial 

distribution with small event probabilities (so that the Poisson approximation holds) then we 

may use the PRIMM software program (reference here) to estimate the individual 9X{. For 

completeness, if we apply Morris (1983b) to estimate 9yi for Abraham we find (9yl- = —2.862. 
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We may use this when making predictions with the ecological models. Clearly evaluating 

and developing methods of forecasting and prediction presents an opportunity for future 

research. 

As with all data analyses we must be careful and interpret our model only in the range for 

which we have information. We have most information at 9X{ = 70, the mean population 

risk, and as (9X1- moves away from 70 the information diminishes. Although we have no 

quantitative results, we recommend treating the structural models as valid only in the 

region given by % i l-5fx. The vertical lines in Figure 5.3 represent this region for the 

magnesium data. The argument for choosing values less than 1.96 (a 95% interval) is in 

consideration of the uncertainty of estimating tails of any distribution. We choose 1.5 for 

idiosyncratic reasons. 

Because we find a significant ecological slope with a variety of treatment effect, popu­

lation risk, and ecological models, we conclude their exists overwhelming evidence for the 

existence of an ecological association for magnesium. As we began in Chapter 1, we find that 

differences in the population risk can account for substantial between trial heterogeneity. 

5.4.3 Streptokinase data 

Table 5.7 summarizes the posterior distribution for the streptokinase data when using 

the standard model, and Table 5.8 summarizes the posterior distribution when we add a 

squared term. Figure 5.4 plots the two structural models. 

The standard model gives the posterior mean for Pg as Pg = 0.042, with almost 60% 

of its mass falling above zero. We conclude from this that the streptokinase does not have 

an ecological association linear in this population risk. Overall streptokinase has mean 

treatment effect fiy = —0.241, with a 95% posterior interval from -0.43 to -0.144, and 

so we can be confident that on average trials of streptokinase are beneficial. Although 
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Table 5.7: Streptokinase results for standard specification. 

Posterior Estimates Quantiles 
Mean Std.Dev. P-val 

Pg 0.042 0.157 0.598 
Po -0.175 0.283 0.320 

ry |x 0.110 0.098 1 
7o -1.771 0.097 0 
rx 0.462 0.081 1 
fi,, -0.241 0.060 0 

0.025 0.05 0.50 0.95 0.975 

-0.382 -0.245 0.048 0.258 0.312 
-0.984 -0.737 -0.169 0.247 0.329 
0.003 0.005 0.083 0.293 0.348 

-1.989 -1.963 -1.774 -1.605 -1.566 
0.317 0.328 0.453 0.607 0.647 
-0.43 -0.389 -0.244 -0.165 -0.144 

Table 5.8: Streptokinase quadratic model specifications. 

Posterior Estimates Quantiles 
Mean Std.Dev. P-val 

P2 0.157 0.788 0.609 
Pi 0.428 2.746 0.582 
Po -0.171 2.297 0.473 

ry(x 0.585 0.147 1 
7o -1.769 0.107 0 
r x 0.482 0.1 1 

0.025 0.05 0.50 0.95 0.975 

-1.829 -1.463 0.19 1.348 1.584 
-6.376 -4.995 0.494 4.68 5.475 
-5.979 -4.383 -0.129 3.382 4.233 
0.313 0.344 0.57 0.854 0.931 

-2.005 -1.98 -1.757 -1.576 -1.553 
0.305 0.322 0.471 0.662 0.718 

their is no ecological association, the probability of a future trial causing harm is only 

P(9yi > Q\0) = 0.042, nearly half that found by the large sample procedure. Thus the small 

sample procedure suggests that heterogeneity may be low enough so that general use of 

streptokinase has minimal risk. 

Table 5.8 does not find the quadratic term significant, and so in the interest of parsimony 

we prefer the standard model. Figure 5.4 plots the two structural models together, and 

shows that both give close agreement over the range of the observed data. 
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5.5 Summary of simulations 

The small sample procedure requires a substantial amount of time (in hours) to reach 

convergence. For example, the magnesium trials typically achieved convergence shortly 

after one hour of computing time. This makes comprehensive analysis with simulation 

prohibitive because typically several hundred runs are required for each study. Here we 

will use simulation and concentrate on evaluating the performance of the small sample 

procedure for only the situation where the large sample procedure fails most completely. 

We also conduct a few smaller simulation studies to provide evidence that the small sample 

procedure does not do worse than the large sample procedure in other circumstances. That 

is, we wish to provide evidence that the small sample procedure will not do worse than, 

and at times will do better than, the large sample procedure. We restrict our attention to 

binomial measurement. 

Recall that the three sets of simulations given in Section 4.5 used parameters 4> a n d 

sample sizes k and ii{. to represent streptokinase trials, (see page 4.5 for a detailed description 

of the simulation procedure). We found that the large sample Bayes procedure appears 

nearly unbiased for both, but the maximum likelihood procedure gives adequate correction 

only when the measurement errors have normal distribution. The top two rows of Table 5.9 

summarizes the performance of the small sample procedure with these configurations. The 

row with label "Streptokinase" summarizes the performance when simulations match the 

streptokinase data. We only perform these simulations to test the hypothesis that the small 

sample procedure does not do worse, and so we use only 100 iterations. Because each 

estimate falls within two standard errors of their true values, these simulation results are 

consistent with the small sample procedure being unbiased and having honest coverage 

A third set of simulations from Section 4.5 used the smallest nine streptokinase trials 

for a simulation study. Recall that the least squares methods all estimated regression slopes 



www.manaraa.com

5.5 Summary of simulations 106 

Table 5.9: Summary of small sample simulations. The top row gives the simulation results 
when the small sample procedure is applies to all 33 streptokinase trials when 4> matches the 
posterior mean estimates in Table 5.7. The row with label "Small Streptokinase" gives the 
results when only the smallest nine streptokinase trials are used for simulation. Compare 
these results to those in Section 4.5. 

Coverage 
Method E(pg) 90% 95% 

Structural Methods: 
Streptokinase: 0.005 0̂ 87 0.93 

(n=100) (0.014) (0.033) (0.026) 
Small Streptokinase -0.098 0.94 0.97 

(n=250) (0.051) (0.015) (0.011) 

near 0.5, and the structural methods found the quite disturbing result that the Bayes and 

maximum likelihood procedures increased the bias compared to the least squares methods. 

Recall that the large sample procedure Bayes estimates of Pg averaged -0.631, nearly ten 

standard errors from Pg — 0. We focus our attention on this set of simulations and so we 

use a greater number of repetitions (n = 250). The row in Table 5.9 with label "Small 

Streptokinase" summarizes this simulation study. The small sample procedure estimates 

of Pg averaged Pg = -0.098, and is -0.098/0.051=-1.92 standard errors from Pg = 0. This 

suggests that there may be mild under adjustment of the slope, but otherwise corrects a 

substantial portion of the bias. The interval estimates appear to be slightly greater than 

nominal coverage, and so we may consider the small sample procedure as giving slightly 

conservative interval estimates. 
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Figure 5.2: Posterior distributions for selected magnesium data parameters. Computed 
from the second half of 5 parallel runs of the Metropolised data augmentation algorithm, 
for a total of 10,000 iterations. 
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www.manaraa.com

Chapter 6 

Conclusions and Summary 

This thesis proposes a procedure to perform meta-analysis using ecological covariates. Eco­

logical covariates are aggregate values that measure attributes, or the ecology, of the treated 

populations. Perhaps the most useful ecological covariate is constructed from the control 

group outcomes, a value we call the "population risk." It is most useful because it is always 

available and the information we need to correct for biases can be always be estimated from 

clinical summaries. 

The population risk also has practical use because it has an intuitive meaning that 

physicians find appealing, and because its value is affected by many factors that physicians 

would like to control for but cannot because of the lack of covariates. This is dramatically 

demonstrated by the magnesium data, where "time until treatment", an important factor 

that is available for only a few studies, correlates highly with the population risk. 

This meta-analysis method has already been proven useful for making health policy deci­

sions. The conclusion of the magnesium data analyses has been used as evidence supporting 

a larger body of theories proposed by Dr. Elliott Antman, and also as part of a justification 

for a new clinical trial. The work for this manuscript began because Dr. Antman wished 

to determine if higher risk populations may benefit from magnesium treatment. 

Researchers Christopher Schmid, Joseph Lau, Joseph Cappelleri, and John Ionnidis, of 
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the New England Medical Center, are also conducting a large body of related work using 

this technology. They demonstrate the value of using the control group risk as a covariate 

to help answer many important medical questions. For example, Lau et al. (1995) shows 

that controlling for population risk has some value for explaining the discrepancies between 

large and small clinical trials. They also find that in meta-analyses where some individual 

data are available the association of patients individual risks with treatment efficacy has 

magnitude similar to the effect estimate from the methods described in Chapter 4. That 

is, when concluding that sicker populations benefit from treatment, it also seems to follow 

that sicker patients within the trials benefit more than the patients who are less sick. 

At first it appears that controlling for the population risk should be as simple as including 

its value as a covariate in a linear model. However, we have shown that doing this may 

lead to coefficient estimates that are meaningless. Correcting this bias requires considerable 

time and effort, and also requires that we know the within trial regression slopes, which 

may not be available. If the magnitude of measurement error is small then simply using the 

ecological covariates in a linear model does lead to meaningful inferences. It is valuable to 

know when we can ignore the measurement error so that we can use ecological covariates 

when the within trial regression slopes are not known. Toward this end we also provide 

a method to quantify the measurement error bias so that we may determine when the 

measurement error may be ignored. We discuss this at the end of Chapter 3. 

We develop two models and two corresponding estimating procedures to estimate the 

ecological model. One method, given in Chapter 3 and Chapter 4, assumes that the popula­

tion risk and treatment effects have normal distributions. Simulation results show that the 

likelihood based inferences given by Chapter 4 have good frequency properties under many 

conditions, but fails when within study samples are not large enough for the normal mea­

surement error approximation to hold. The model of Chapter 5 correct these deficiencies. 

Limited simulation results suggest that has been accomplished. 
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Because the normal model of Chapter 4 is simpler and quicker to use, it would be useful 

to know it leads to valid inferences, because the procedure in Chapter 5 is more complicated. 

The simulation results at the end of Chapter 4 suggest that the non-normal measurement 

error can be ignored when "some" of the trials have large samples and heterogeneity is not 

"too" great. No concise rule is available. Deriving such a rule is an opportunity for further 

research. 

Possibly one definition of treatment effect and population risk will find significant eco­

logical association, but another choice will not. In fact, if an ecological association does 

not exist with one specification, and ecological association will necessarily exist on another. 

For example, if the log-relative risk is constant as the control group mortality changes, then 

the log-odds ratio will not be constant. Perhaps the best discussion of this can be found 

in Sinclair and Bracken (1994). The data analyses in Chapter 5 demonstrated that many 

different ecological models lead to strikingly similar conclusions for the streptokinase and 

magnesium data, and our experience with other data sets shows that this kind of multi­

plicity often holds true. We have no assurance that this will hold true for all data sets. 

Clearly, developing methods for model checking or evaluation is an important topic for 

future research. 
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